AHEAD OF THE FLOW®

Butterfly Valves

Business-to-Business Solutions

Look to NIBCO for technology leadership.

The velocity with which e-business evolves demands that new products and services be continuously developed and introduced to keep our customers at the center of our business efforts. NIBCO provides an entire suite of business-to-business solutions that is changing the way we interact with customers.

NIBCOpartner.comsm is an exclusive set of secure web applications that allow quick access to customer-specific information and online order processing. This self-service approach gives you 24/7 access to your order status putting you in total control of your business.

Real time information includes:

- Online order entry
- Viewable invoices & reports
- Inventory availability
- Current price checks
- Order status
- Online library of price sheets, catalogs & submittals

Electronic Data Interchange (EDI) makes it possible to trade business documents at the speed of light. This technology cuts the cost of each transaction by eliminating the manual labor and paper-work involved in traditional order taking. This amounts to cost-savings, increased accuracy and better use of resources.

With EDI, you can trade:

- Purchase orders
- PO Acknowledgements
- Invoices

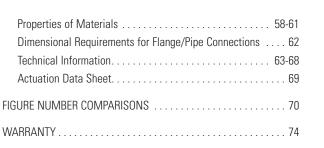
- Product activity data
- Advanced ship notices
- Remittance advice

Vendor Managed Inventory (VMI), a sophisticated service for automated inventory management, reduces your overhead by transferring inventory management, order entry and forecasting to NIBCO. This is an on-going, interactive partnership with NIBCO.

Through automation, VMI brings results:

- Improves customer service
- Optimum inventory efficiencies
- Better forecasting

- Cuts transaction costs
- Peace of mind
- Relief from day-to-day management



General Index Butterfly Valves

Visit our website for the most current information.

BUTTERFLY VALVES
HIGH PERFORMANCE BUTTERFLY VALVE
OPTIONS AND ACCESSORIES INDEX
ENGINEERING DATA

150 9001

BUREAU VERITAS

Key to Butterfly Valve Figure Number System*

L	D -	2	0	0	0 0			• 0
Body	Body Body		Seat	Disc	Stem	& Bushing Combina	tions	Operating
Туре	Material	Rating	Material	Material	Stem	Upper & Lower	Collar	Mechanism
L-Lug	D-Ductile Iron	L-Actuated	0-EPDM	0-Aluminum Bronze	0-416SS	Copper Alloy	Brass	0-Bare Stem
W-Wafer	C-Cast Iron	1-150 psi	1-Buna-N (Nitrile)	1-Ductile Iron ¹	1-416SS	316SS	Brass	1-Infinite Position
G-Groove	d	2-200 psi	2-Fluoroelastomer	2-CF8M	2-17-4PH ³	316SS ³	316SS	Plate and Lock
F-Flanged		3-250 psi	5-UL/FM	6-EPDM Coated	5-416SS	PTFE/Bronze	_	3-Lever Lock (std)
		4-300 psi	7-Polyamide	Ductile Iron ²	7-416SS	PTFE	_	5-Gear
		5-285 psi		7-Buna-N Coated	8-316SS			
		6-350 psi		Brass or Ductile Iror	1 ² 9-17-4PH			
		7-232 psi		8-Nylon Coated				
				Ductile Iron				

*This key is a guide only, it is not intended to imply that all combinations can or will be produced.

¹ Electro nickel plated.

² Grooved and flanged end only.

³ Lug style 14" and larger are 316SS stem with bronze bushings.

Key to N200 Butterfly Valves					
Series	Body Style	Seat Material	Disc Material	Operator	
N200 = 2"-12"	1 = Wafer	3 = EPDM	5 = Aluminum Bronze	LH = Lever	
N150 = 14"-24"	2 = Lug	4 = Buna	6 = Ductile Iron	GO = Gear	
			8 = Nylon Coated Ductile In	nn	

High Performance Butterfly Valves Figure Number Key*

_L	CS -	6	8	2		2	- 0
Body	Body	Pressure	Seat	Disc	Stem & Bush	ing Combinations	Operating
Туре	Material	Class	Material	Material	Stem	Upper & Lower	Mechanism
L-Lug	CS-Carbon	6-150	8-RPTFE	2-316 Stainless Steel	2-17-4PH	PTFE Coated	0-Bare Stem
W-Wafer	Steel	7-300				Alloy 304SS	1-Infinite Position

*This key is a guide only. It is not intended to infer that all combinations can or will be produced.

Visit our website for the most current information.

Throttling Plate (option) 3-Lever Handle (std)

5-Gear Operated

Butterfly Valves

Factors to Consider When Choosing Butterfly Valves

Operating Life	Butterfly valves can provide many maintenance free cycles and still accommodate "bubble tight" shut off.
Pressure Drop	 Energy costs go up with excessive pressure drop. The valve or valves are but one factor in a piping system that contribute to pressure drop. Of equal concern are these factors: Flow area of piping. Friction loss against pipe walls. Change of flow direction via fittings. Butterfly valves have flow characteristics three times better than globe valves and approximately 75% of an equivalent size gate valve.
Versatility	Butterfly valves can be used for on/off service and throttling/balancing. They are superior in "versatility" as compared to a gate or globe valve. Butterfly valves have a wider range of chemical resistance due to the trim options and choice of elastomeric liners.
Weight	Installation dollars saved with lightweight butterfly valves as compared to heavyweight cast iron valves; i.e. a 10" butterfly may weigh 55 pounds, whereas a 10" iron gate may weigh 490 pounds. This can be an important savings when it is calculated over an entire system. The heavier the system, the stronger the pipe hangers, and the more expensive they become. So by considering the weight of a valve one can also reduce piping system costs.
Physical Size	Butterfly valves take up approximately 1/6 the space of a gate valve. Every cubic foot of a building costs money. I.E.: 10" butterfly is about 21" high 10" iron gate is about 43" high
Bubble Tight Shut-Off	Gate and globe (metal to metal) seats cannot provide bubble tight shut-off. Resilient seated butterfly valves are bubble tight by design.
Ease of Operation	Butterfly valves offer 1/4 turn (90°) open to close. Gates and globes require multiple turns to open and close. Ease of opening or closing means that butterfly valves can employ less expensive operators.
Cost	A butterfly valve is generally 40% the cost of an iron gate valve, not only low initial cost but low installation costs also.
Maintenance	Properly installed butterfly valves are virtually self cleaning and are less susceptible to failure due to trash material in the line.

AHEAD OF THE FLOW®

2000/3000/5000 Series Butterfly Valves

* Threaded Collar Bushing for positive stem retention (blow-out proof)

Body and Stem O-ring Seals of EPDM, Buna-N or Fluorocarbon.

Extended Neck for insulation up to 2".

Molded-in Liner fully supported by valve body at flange seals. Eliminates leakage between body and liner as in cartridge or boot type liners. Provides dead-end service without the need for a flange on the downstream side.

High-Strength Stainless Steel Stem materials with one-piece thru-disc design.

Upper and Lower Bushings are standard for smooth valve operation.

Streamlined Spherical Disc with high flow capacity.

Internal Stem/Disc Drive

eliminates the need for pins or bolts which create additional leak paths, turbulence in the waterway and/or flow reduction.

Ductile Iron Body more durable than cast iron (reduces breakage).

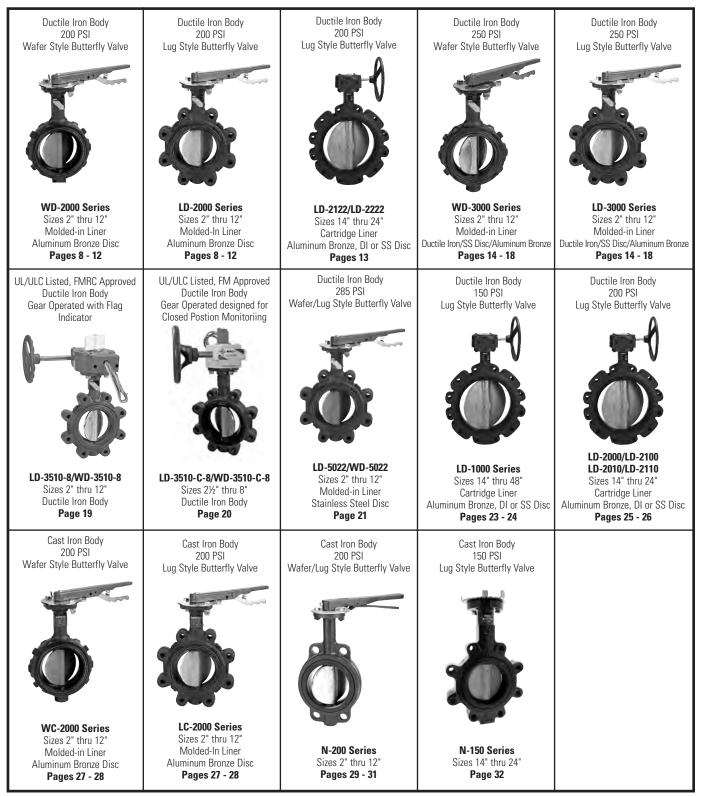
"Blind-Hole" lower bushing prevents leakage.

A High-Pressure Resilient-Seated Butterfly Valve Featuring:

- Pressure rating to 250 psi for 3000 Series, 285 psi for 5000 Series, vacuum to 28" Mercury
- Wide choice of materials to suit customer's application
- Bubble-tight shutoff at full pressure rating
- 200/232/250 bi-directional dead end service rating without a downstream flange required

*Collar bushing is non-removable.

Operation

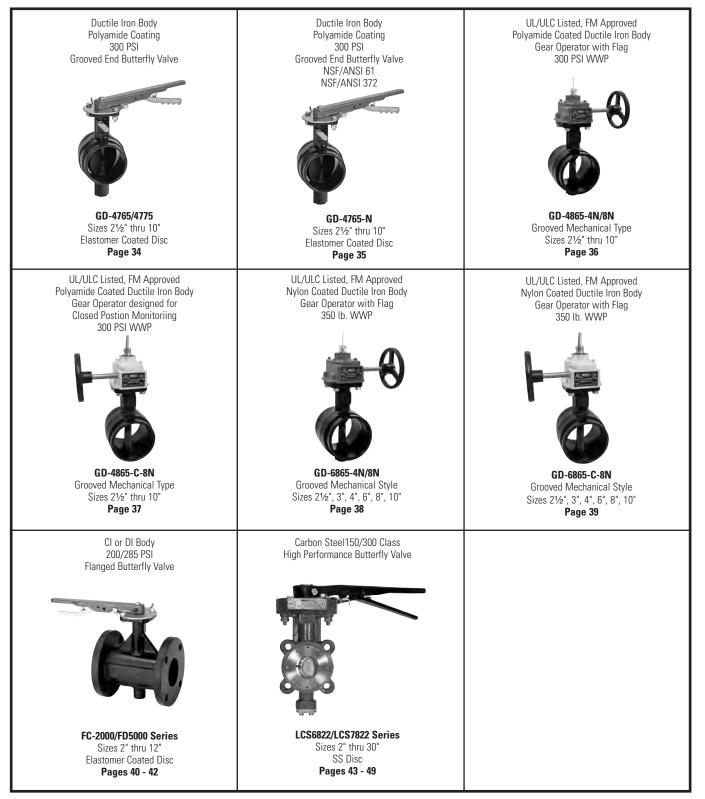

Bare shaft, lever-lock flow control handle, worm gear operator, electric and pneumatic actuators

Body Styles

Tapped full lug or wafer

Butterfly Valves Illustrated Index

Visit www.nibco.com for on-line listing of information contained in this catalog.



Visit our website for the most current information.

Butterfly Valves Illustrated Index

Visit www.nibco.com for on-line listing of information contained in this catalog.

Ductile Iron Body • Extended Neck • Geometric Drive • Molded-In Seat Liner • Lug and Wafer Style

Sizes 2" through 12"

Install between Std. ASME Class 125/150 flanges. Lug Style 200 PSI bi-directional dead end service rating without a downstream flange required.

THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67 STANDARD • U.S. COAST GUARD "CATEGORY A" • CERTIFIED LEAD-FREE* BY TRUESDAIL LABS TO NSF/ANSI 61-8 COMMERCIAL HOT 180°F AND NSF/ANSI 61 AND 372

I	MATERIAL LIST	_
PART	SPECIFICATION	_
1. Stem	Stainless Steel ASTM A582 Type 416	
2. Collar Bushing	Brass ASTM B16	
3. Stem Seal	EPDM Rubber	_
4. Body Seal	EPDM Rubber	_
5. Nameplate	Aluminum	
6. Upper Bushing	Copper CDA 122	
7. Liner	EPDM Rubber	
8. Disc	Alum. Brz. ASTM B148 Alloy 955	
9. Lower Bushing	Copper CDA 122	
10. Body Wafer	Ductile Iron ASTM A536	
11. Body Lug	Ductile Iron ASTM A536	_

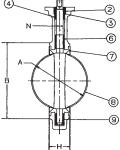
DIMENSIONS — WEIGHTS

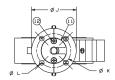
Si	ze							Flat	Metal	Rubber	Square	Dia.
In.	mm.	Α	В	C	D	Е	F	G	Н	1	J	N
2	50	2.53	4.00	1.25	5.38	2.88	.38	.312	1.688	1.812	3.25	.500
21⁄2	65	2.90	4.69	1.25	5.88	3.27	.38	.370	1.812	1.938	3.25	.562
3	80	3.15	5.12	1.25	6.12	3.40	.38	.370	1.812	1.938	3.25	.562
4	100	4.09	6.12	1.25	6.88	4.00	.38	.403	2.062	2.188	3.25	.625
5	125	5.13	7.25	1.25	7.38	4.75	.38	.496	2.188	2.312	3.25	.750
6	150	6.13	8.25	1.25	8.00	5.29	.38	.496	2.188	2.312	3.25	.750
8	200	8.13	10.41	1.25	9.25	6.50	.50	.560	2.375	2.500	3.25	.875
10	250	10.13	12.52	1.25	10.50	8.00	.50	.686	2.688	2.812	4.75	1.125
12	300	12.13	15.00	1.25	12.00	9.25	.50	.748	3.000	3.125	4.75	1.250

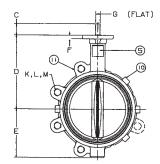
						Capsc	rew/	Stud Data				14/	afer
S	ize	0	Р	R	KLw		w	afer Luq	М	Lı We	ig ight		ight_
ln.	mm.	B.C.	Dia.	Dia.	No.	Dia.		ngth Length	B.C.	Lbs.	Kg.	Lbs.	Kg.
2	50	3.25	.437	.437	45	5/8-11unc	;		4 3/4	7	3.2	5.5	2.5
21/2	65	3.25	.437	.500	4 5	i/8-11unc	;	Defende	5 1/2	9	4.1	7.5	3.4
3	80	3.25	.437	.500	45	5/8-11unc	;	Refer to butterfly	6	9.5	4.3	8	3.6
4	100	3.25	.437	.562	85	i/8-11unc	;	valve	7 1/2	15	6.8	11	5.0
5	125	3.25	.437	.656	83	8/4-10unc	;	technical	8 1/2	21	9.5	15	6.8
6	150	3.25	.437	.656	83	8/4-10unc	;	information	9 1/2	24	10.9	18	8.2
8	200	3.25	.437	.781	83	8/4-10unc	;	for bolt	11 3/4	34	15.4	28	12.7
10	250	5.00	.562	1.000	12	7/8-9unc		lengths	14 1/4	62	28.1	45.5	20.7
12	300	5.00	.562	1.062	12	7/8-9unc			17	90	40.9	70	3 1.8

For actuated service where a lower torque is required use NIBCO Fig. No. WDLXXX-0 or LDLXXX-0 series, sizes 2" thru 12" only. Maximum pressure rating of 100 PSI for wet application and 50 PSI for dry application.

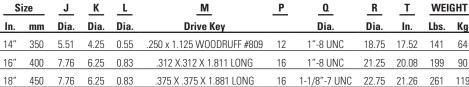
Visit our website for the most current information.


www.nibco.com


Revised 7/25/2018


WD-2000 Wafer Style EPDM Liner and Aluminum Bronze Disc

NOT RECOMMENDED FOR STEAM SERVICE


WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

*Weighted average lead content ≤ 0.25%

Kg

64

90

NOT RECOMMENDED FOR STEAM SERVICE L Size A В C G н Minimum. mm Dia. Pipe I.D. Dia. Dia. D Ε F Body Seat Dia. In. 14″ 350 13.12 13.02 14.77 17.20 14.49 1.77 26.77 3.00 3.13 1.244 29.93 15.34 15.20 17.30 19.21 15.75 2.02 3.37 3.54 16″ 400 1.305 17.34 17.09 19.31 18″ 450 21.22 16.61 2.02 31.54 4.12 4.29 1.494 19.36 18.90 21.08 23.31 18.90 2.53 35.64 5.13 5.31 1.619 20″ 500

11.				
11	Body Lug	Ductile Iron ASTM A536		
10.	Body Wafer	Ductile Iron ASTM A536		
9.	Lower Bushing	Copper CDA 122		
8.	Disc	Ductile Iron ASTM A395 (nickel plated	d)	
7.	Liner	EPDM Rubber		
6.	Upper Bushing	Copper CDA 122		

MATERIAL LIST	
PARTY CERTIFIED BY QAI TO MEET MSS SP-67 ST COAST GUARD "CATEGORY A" • CERTIFIED LEAD- TRUESDAIL LABS TO ANSI 372	

Ĺ	J.S. CUAST G	TRUESDAIL LABS TO ANSI 372
		MATERIAL LIST
	PART	SPECIFICATION
1.	Stem	Stainless Steel ASTM A582 Type 416
2.	Collar Bushing	Brass ASTM B16
3.	Stem Seal	EPDM Rubber
4.	Body Seal	EPDM Rubber
5.	Nameplate	Aluminum
6	Uppor Ruching	Coppor CDA 122

Sizes 14" through 24" Install between Std. ASME Class 125/150 flanges.

AHEAD OF THE FLOW®

200 PSI Butterfly Valves

Lug Style 200 PSI bi-directional dead end service rating without a downstream flange required.

THIRD P ANDARD • ILS C REE* BY

-
Ductile Iron Body • Extended Neck • Geometric Drive • Molded-In Seat Liner •
Lug and Wafer Style

NIBC

24″ 600

16'

23.33

*Weighted average lead content ≤ 0.25%

23.05

25.71

DIMENSIONS — WEIGHTS

22.13

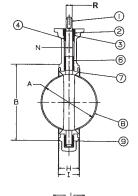
2.76

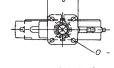
42.96

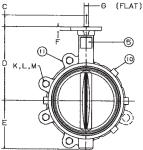
5.96

6.14

1.993


32.09


18″	450	7.76	6.25	0.83	.375 X .375 X 1.881 LONG	16	1-1/8"-7 UNC	22.75	21.26	261	119
20″	500	7.76	6.25	0.83	.375 x .375 x 1.811 LONG	20	1-1/8"-7 UNC	25.00	24.02	395	179
24″	600	10.87	8.50	0.94	.500 x .500 x 2.362 LONG	20	1-1/4"-7 UNC	29.50	27.87	591	268
$\overline{\mathbb{A}}$	WAR of Cal	NING:	This p	roduct e canc	can expose you to chemicals i er and birth defects or other re	ncludi	ng lead, which	is know more ir	n to the formatio	State	to
		arnings								5.1.90	


www.P65Warnings.ca.gov.

LD-2010

Lug Style **EPDM** Liner and Ductile Disc

Visit our website for the most current information.

WD-2010 Wafer Style **EPDM** Liner

and Ductile Disc

Lug

o of the flow™

200 PSI Butterfly Valves

Ductile Iron Body • Extended Neck • Geometric Drive • Molded-In Seat Liner • Lug and Wafer Style

Sizes 2" through 12"

Install between Std. ASME Class 125/150 flanges. Lug Style 200 PSI bi-directional dead end service rating without a downstream flange required.

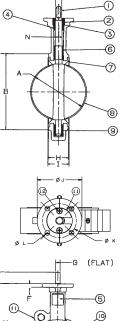
THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67 STANDARD • U.S. COAST GUARD "CATEGORY A" • CERTIFIED LEAD-FREE* BY TRUESDAIL LABS TO ANSI 372

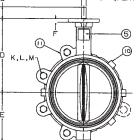
	MATERIAL LIST										
	PART	SPECIFICATION									
1.	Stem	Stainless Steel ASTM A582 Type 416									
2.	Collar Bushing	Brass ASTM B16									
3.	Stem Seal	Buna-N Rubber Nitrile									
4.	Body Seal	Buna-N Rubber Nitrile									
5.	Nameplate	Aluminum									
6.	Upper Bushing	Copper CDA 122									
7.	Liner	Buna-N Rubber Nitrile									
8.	Disc	Alum. Brz. ASTM B148 Alloy 954/955									
9.	Lower Bushing	Copper CDA 122									
10.	Body Wafer	Ductile Iron ASTM A536									
11.	Body Lug	Ductile Iron ASTM A536									

DIMENSIONS — WEIGHTS

Siz	ze							Flat	Metal	Rubber	Square	Dia.
In.	mm.	Α	В	C	D	E	F	G	H	1	J	Ν
2	50	2.53	4.00	1.25	5.38	2.88	.38	.312	1.688	1.812	3.25	.500
2 1/2	65	2.90	4.69	1.25	5.88	3.27	.38	.370	1.812	1.938	3.25	.562
3	80	3.15	5.12	1.25	6.12	3.40	.38	.370	1.812	1.938	3.25	.562
4	100	4.09	6.12	1.25	6.88	4.00	.38	.403	2.062	2.188	3.25	.625
5	125	5.13	7.25	1.25	7.38	4.75	.38	.496	2.188	2.312	3.25	.750
6	150	6.13	8.25	1.25	8.00	5.29	.38	.496	2.188	2.312	3.25	.750
8	200	8.13	10.41	1.25	9.25	6.50	.50	.560	2.375	2.500	3.25	.875
10	250	10.13	12.52	1.25	10.50	8.00	.50	.686	2.688	2.812	4.75	1.125
12	300	12.13	15.00	1.25	12.00	9.25	.50	.748	3.000	3.125	4.75	1.250

Si	ze	0	<u>P</u>	R	<u>_K</u>	L	Wafer Lug	M	We	eight	We	ight
In.	mm.	B.C.	Dia.	Dia.	No.	Dia.	Length Length	B.C.	Lbs.	Kg.	Lbs.	Kg.
2	50	3.25	.437	.437	4 5	5/8-11unc		4 3/4	7	3.2	5.5	2.5
2 1/2	65	3.25	.437	.500	4 5	5/8-11unc		5 1/2	9	4.1	7.5	3.4
3	80	3.25	.437	.500	4 5	5/8-11unc	Refer to	6	9.5	4.3	8	3.6
4	100	3.25	.437	.562	8 5	5/8-11unc	butterfly valve	7 1/2	15	6.8	11	5.0
5	125	3.25	.437	.656	83	3/4-10unc	technical	8 1/2	21	9.5	15	6.8
6	150	3.25	.437	.656	83	3/4-10unc	information for bolt	9 1/2	24	10.9	18	8.2
8	200	3.25	.437	.781	83	8/4-10unc	lengths	11 3/4	34	15.4	28	12.7
10	250	5.00	.562	1.000	12	7/8-9unc		14 1/4	62	28.1	45.5	20.7
12	300	5.00	.562	1.062	12	7/8-9unc		17	90	40.9	70	31.8
For an	hotout	corvico v	whore a	lower tor	auo ie 1	roquirod u	so NIRCO Eig. N			ח עעע ור	orios siz	oc 2" thru


Capscrew/Stud Data


For actuated service where a lower torque is required use NIBCO Fig. No. WDLXXX-0 or LDLXXX-0 series, sizes 2" thru 12" only. Maximum pressure rating of 100 PSI for wet application and 50 PSI for dry application

Visit our website for the most current information.

_

LD-2100 Lug Style Buna-N Liner and Aluminum Bronze Disc

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

*Weighted average lead content ≤ 0.25%

Revised 7/25/2018

NSF/ANSI 372

WD-2100 Wafer Style Buna-N Liner and Aluminum Bronze Disc

NOT RECOMMENDED FOR STEAM SERVICE

Wafer

AHEAD OF THE FLOW®

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go

For actuated service where a lower torque is required use NIBCO Fig. No. WDLXXX-0 or LDLXXX-0 series, sizes 2" thru 12" only. Maximum pressure rating of 100 PSI for wet application and 50 PSI for dry application

*Weighted average lead content $\leq 0.25\%$

200 PSI Butterfly Valves

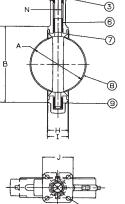
AHEAD OF THE FLOW®

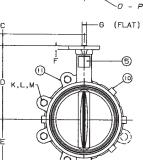
Ductile Iron Body • Extended Neck • Geometric Drive • Molded-In Seat Liner • Lug and Wafer Style

Sizes 2" through 12"

Install between Std. ASME Class 125/150 flanges. Lug Style 200 PSI bi-directional dead end service rating without a downstream flange required.

THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67 STANDARD • U.S. COAST GUARD "CATEGORY A" • CERTIFIED LEAD-FREE* BY TRUESDAIL LABS TO ANSI 372


	MATERIAL LIST										
	PART	SPECIFICATION									
1.	Stem	Stainless Steel ASTM A582 Type 416									
2.	Collar Bushing	Brass ASTM B16									
3.	Stem Seal	EPDM Rubber									
4.	Body Seal	EPDM Rubber									
5.	Nameplate	Aluminum									
6.	Upper Bushing	Copper CDA 122									
7.	Liner	EPDM Rubber									
8.	Disc	Ductile Iron ASTM A395 (nickel plated)									
9.	Lower Bushing	Copper CDA 122									
10.	Body Wafer	Ductile Iron ASTM A536									
11.	Body Lug	Ductile Iron ASTM A536									
	9										


DIMENSIONS — WEIGHTS

ze							G	Metal	Rubber	J	N
Mm.	Α	В	C	D	Е	F	Flat	Н		Square	Dia.
50	2.53	4.00	1.25	5.38	2.88	.38	.312	1.688	1.812	3.25	.500
65	2.90	4.69	1.25	5.88	3.27	.38	.370	1.812	1.938	3.25	.562
80	3.15	5.12	1.25	6.12	3.40	.38	.370	1.812	1.938	3.25	.562
100	4.09	6.12	1.25	6.88	4.00	.38	.403	2.062	2.188	3.25	.625
125	5.13	7.25	1.25	7.38	4.75	.38	.496	2.188	2.312	3.25	.750
150	6.13	8.25	1.25	8.00	5.29	.38	.496	2.188	2.312	3.25	.750
200	8.13	10.41	1.25	9.25	6.50	.50	.560	2.375	2.500	3.25	.875
250	10.13	12.52	1.25	10.50	8.00	.50	.686	2.688	2.812	4.75	1.125
300	12.13	15.00	1.25	12.00	9.25	.50	.748	3.000	3.125	4.75	1.250
	50 65 80 100 125 200 250	Mm. A 50 2.53 65 2.90 80 3.15 100 4.09 125 5.13 150 6.13 200 8.13 250 10.13	Mm. A B 50 2.53 4.00 65 2.90 4.69 80 3.15 5.12 100 4.09 6.12 125 5.13 7.25 150 6.13 8.25 200 8.13 10.41 250 10.13 12.52	Mm. A B C 50 2.53 4.00 1.25 65 2.90 4.69 1.25 80 3.15 5.12 1.25 100 4.09 6.12 1.25 125 5.13 7.25 1.25 150 6.13 8.25 1.25 200 8.13 10.41 1.25 250 10.13 12.52 1.25	Mm. A B C D 50 2.53 4.00 1.25 5.38 65 2.90 4.69 1.25 5.88 80 3.15 5.12 1.25 6.12 100 4.09 6.12 1.25 6.88 125 5.13 7.25 1.25 6.88 126 6.13 8.25 1.25 8.00 150 6.13 8.25 1.25 8.00 200 8.13 10.41 1.25 9.25 250 10.13 12.52 1.25 10.50	Mm. A B C D E 50 2.53 4.00 1.25 5.38 2.88 65 2.90 4.69 1.25 5.88 3.27 80 3.15 5.12 1.25 6.12 3.40 100 4.09 6.12 1.25 6.88 4.00 125 5.13 7.25 1.25 7.38 4.75 150 6.13 8.25 1.25 8.00 5.29 200 8.13 10.41 1.25 9.25 6.50 250 10.13 12.52 1.25 10.50 8.00	Mm. A B C D E F 50 2.53 4.00 1.25 5.38 2.88 .38 65 2.90 4.69 1.25 5.88 3.27 .38 60 3.15 5.12 1.25 6.12 3.40 .38 100 4.09 6.12 1.25 6.88 4.00 .38 125 5.13 7.25 1.25 6.88 4.00 .38 125 5.13 7.25 1.25 8.00 5.29 .38 125 6.13 8.25 1.25 8.00 5.29 .38 150 6.13 8.25 1.25 9.25 6.50 .50 200 8.13 10.41 1.25 9.25 6.50 .50 250 10.13 12.52 1.25 10.50 8.00 .50	Mm. A B C D E F Flat 50 2.53 4.00 1.25 5.38 2.88 .38 .312 65 2.90 4.69 1.25 5.88 3.27 .38 .370 80 3.15 5.12 1.25 6.12 3.40 .38 .370 100 4.09 6.12 1.25 6.88 4.00 .38 .403 125 5.13 7.25 1.25 7.38 4.75 .38 .496 125 5.13 7.25 1.25 8.00 5.29 .38 .496 150 6.13 8.25 1.25 8.00 5.29 .38 .496 200 8.13 10.41 1.25 9.25 6.50 .50 .560 250 10.13 12.52 1.25 10.50 8.00 .50 .686	Mm. A B C D E F Flat H 50 2.53 4.00 1.25 5.38 2.88 .38 .312 1.688 65 2.90 4.69 1.25 5.88 3.27 .38 .370 1.812 80 3.15 5.12 1.25 6.12 3.40 .38 .370 1.812 100 4.09 6.12 1.25 6.88 4.00 .38 .403 2.062 125 5.13 7.25 1.25 6.88 4.00 .38 .403 2.062 125 5.13 7.25 1.25 6.88 4.00 .38 .403 2.062 125 5.13 7.25 1.25 8.00 5.29 .38 .496 2.188 150 6.13 8.25 1.25 9.25 6.50 .50 .560 2.375 200 8.13 10.41 1.25 9.25	Mm. A B C D E F Flat H I 50 2.53 4.00 1.25 5.38 2.88 .38 .312 1.688 1.812 65 2.90 4.69 1.25 5.88 3.27 .38 .370 1.812 1.938 80 3.15 5.12 1.25 6.12 3.40 .38 .370 1.812 1.938 100 4.09 6.12 1.25 6.88 4.00 .38 .403 2.062 2.188 125 5.13 7.25 1.25 7.38 4.75 .38 .406 2.188 2.312 150 6.13 8.25 1.25 8.00 5.29 .38 .496 2.188 2.312 200 8.13 10.41 1.25 9.25 6.50 .50 .560 2.375 2.500 250 10.13 12.52 1.50 8.00 .50 .686 </td <td>Mm. A B C D E F Flat H I Square 50 2.53 4.00 1.25 5.38 2.88 .38 .312 1.688 1.812 3.25 65 2.90 4.69 1.25 5.88 3.27 .38 .370 1.812 1.938 3.25 80 3.15 5.12 1.25 6.12 3.40 .38 .370 1.812 1.938 3.25 100 4.09 6.12 1.25 6.88 4.00 .38 .403 2.062 2.188 3.25 100 4.09 6.12 1.25 7.38 4.75 .38 .403 2.062 2.188 3.25 125 5.13 7.25 1.25 7.38 4.75 .38 .406 2.188 2.312 3.25 150 6.13 8.25 1.25 8.00 5.29 .38 .496 2.188 2.312 3.</td>	Mm. A B C D E F Flat H I Square 50 2.53 4.00 1.25 5.38 2.88 .38 .312 1.688 1.812 3.25 65 2.90 4.69 1.25 5.88 3.27 .38 .370 1.812 1.938 3.25 80 3.15 5.12 1.25 6.12 3.40 .38 .370 1.812 1.938 3.25 100 4.09 6.12 1.25 6.88 4.00 .38 .403 2.062 2.188 3.25 100 4.09 6.12 1.25 7.38 4.75 .38 .403 2.062 2.188 3.25 125 5.13 7.25 1.25 7.38 4.75 .38 .406 2.188 2.312 3.25 150 6.13 8.25 1.25 8.00 5.29 .38 .496 2.188 2.312 3.

					0	Capscre	ew/Stud Data		Lı	a	W.	afer
Si	ze	0	Р	R	K	L	Wafer Lug	M		ight_		ight
<u>In. r</u>	nm.	B.C.	Dia.	Dia.	No.	Dia.	Length Length	B.C.	Lbs.	Kg.	Lbs.	Kg.
2	50	3.25	.437	.437	4 5/8	3-11unc		4 3/4	7	3.2	5.5	2.5
2 1/2	65	3.25	.437	.500	4 5/8	3-11unc		5 1/2	9	4.1	7.5	3.4
3	80	3.25	.437	.500	4 5/8	3-11unc	Refer to	6	9.5	4.3	8	3.6
4	100	3.25	.437	.562	8 5/8	3-11unc	butterfly valve	7 1/2	15	6.8	11	5.0
5	125	3.25	.437	.656	8 3/4	1-10unc	technical	8 1/2	21	9.5	15	6.8
6	150	3.25	.437	.656	8 3/4	1-10unc	information for bolt	9 1/2	24	10.9	18	8.2
8	200	3.25	.437	.781	8 3/4	1-10unc	lengths	11 3/4	34	15.4	28	12.7
10	250	5.00	.562	1.000	12 7/	8-9unc		14 1/4	62	28.1	45.5	20.7
12	300	5.00	.562	1.062	12 7/	8-9unc		17	90	40.9	70	31.8

Visit our website for the most current information.

LD-2110 Lug Style **EPDM** Liner and Ductile Disc

 \bigcirc

2


WD-2110 Wafer Style **EPDM** Liner

and Ductile Disc

(4)

NOT RECOMMENDED

FOR STEAM SERVICE

Ductile Iron Body • Extended Neck • Geometric Drive • Molded-In Seat Liner • Lug and Wafer Style • 316 S.S. Trim

Sizes 2" through 12"

Install between Std. ASME Class 125/150 flanges. Lug Style 200 PSI bi-directional dead end service rating without a downstream flange required.

THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67 STANDARD • U.S. COAST GUARD "CATEGORY A" • CERTIFIED LEAD-FREE* BY TRUESDAIL LABS TO NSF/ANSI 61-8 COMMERCIAL HOT 180°F NSF/ANSI 372

	MATERIAL LIST								
PART	SPECIFICATION								
1. Stem	Stainless Steel ASTM A564 Type 17-4PH								
2. Collar Bushing	Stainless Steel ASTM A276 Type 316								
3. Stem Seal Options: See Below*									
4. Body Seal	Options: See Below*								
5. Nameplate	Aluminum								
6. Upper Bushing	Stainless Steel ASTM A276 Type 316								
7. Liner	Options: See Below*								
8. Disc	Stainless Steel ASTM A743 Grade CF8M								
9. Lower Bushing	Stainless Steel ASTM A276 Type 316								
10. Body Wafer	Ductile Iron ASTM A536								
11. Body Lug	Ductile Iron ASTM A536								
*Ontional Liners/Seals	• 0 - EPDM 1 - Runa-N (Nitrile) 2 - Eluoroelastomer								

[•]Optional Liners/Seals: 0 - EPDM 1 - Buna-N (Nitrile) 2 - Fluoroelastomer Note: only EPDM liners meet NSF 61 certification.

DIMENSIONS — WEIGHTS

Si	ze							G	Metal	Rubber	J	N
In.	mm.	Α	В	C	D	Е	F	Flat	H	1	Square	Dia.
2	50	2.53	4.00	1.25	5.38	2.88	.38	.312	1.688	1.812	3.25	.500
2 1/2	65	2.90	4.69	1.25	5.88	3.27	.38	.370	1.812	1.938	3.25	.562
3	80	3.15	5.12	1.25	6.12	3.40	.38	.370	1.812	1.938	3.25	.562
4	100	4.09	6.12	1.25	6.88	4.00	.38	.403	2.062	2.188	3.25	.625
5	125	5.13	7.25	1.25	7.38	4.75	.38	.496	2.188	2.312	3.25	.750
6	150	6.13	8.25	1.25	8.00	5.29	.38	.496	2.188	2.312	3.25	.750
8	200	8.13	10.41	1.25	9.25	6.50	.50	.560	2.375	2.500	3.25	.875
10	250	10.13	12.52	1.25	10.50	8.00	.50	.686	2.688	2.812	4.75	1.125
12	300	12.13	15.00	1.25	12.00	9.25	.50	.748	3.000	3.125	4.75	1.250

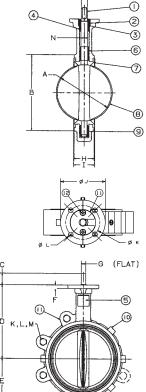
Capscrew/Stud Data											Iq	We	ıfer
Si	ze	0	Р	R	К	L	w	afer Lug	Μ		ight		ight_
In. r	nm.	B.C.	Dia.	Dia.	No.	Dia.		ngth Length	B.C.	Lbs.	Kg.	Lbs.	Kg.
2	50	3.25	.437	.437	45	i/8-11unc	2		4 3/4	7	3.2	5.5	2.5
2 1/2	65	3.25	.437	.500	45	i/8-11unc	2		5 1/2	9	4.1	7.5	3.4
3	80	3.25	.437	.500	45	i/8-11unc	2	Refer to	6	9.5	4.3	8	3.6
4	100	3.25	.437	.562	85	i/8-11unc	2	butterfly valve	7 1/2	15	6.8	11	5.0
5	125	3.25	.437	.656	83	/4-10unc		technical	8 1/2	21	9.5	15	6.8
6	150	3.25	.437	.656	83	/4-10unc	2	information for bolt	9 1/2	24	10.9	18	8.2
8	200	3.25	.437	.781	83	/4-10unc	2	lengths	11 3/4	34	15.4	28	12.7
10	250	5.00	.562	1.000	12	7/8-9unc			14 1/4	62	28.1	45.5	20.7
12	300	5.00	.562	1.062	12	7/8-9unc			17	90	40.9	70	31.8

Visit our website for the most current information.

NIBCO INC. WORLD HEADQUARTERS • 1516 MIDDLEBURY ST. • ELKHART, IN 46516-4740 • USA • PH: 1.800.234.0227 TECH SERVICES PH: 1.888.446.4226 • FAX: 1.888.336.4226 • INTERNATIONAL OFFICE PH: +1.574.295.3327 • FAX: +1.574.295.3455 www.nibco.com US NSF/ANSI 61

www.nibco.com

Revised 7/25/2018


NSF/ANSI 372

WD-2*22 Wafer Style Optional Liner and CF8M Disc

NOT RECOMMENDED

FOR STEAM SERVICE

LD-2*22 Lug Style Optional Liner and CF8M Disc

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

*Weighted average lead content $\leq 0.25\%$

Ductile Iron Body • Cartridge Liner • Lug Style

Sizes 14", 16", 18", 20", and 24"

Install between Std. ASME Class 125/150 flanges. Is 150 PSI bi-directional dead end service rating without a downstream flange. Do NOT install between AWWA C115/A21.5 type flanges.

THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67 STANDARD • CERTIFIED LEAD-FREE* BY TRUESDAIL LABS TO NSF/ANSI 372

MATERIAL LIST

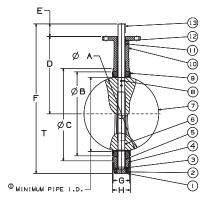
	PART	SPECIFICATION
1.	Screw	Steel, ANSI 1035 (2) 16" & 18" (4) 20" & 24"
2.	Bottom Plate	Ductile Iron ASTM A536 grade 65-45-12
3.	O-ring	Nitrile ASTM D2000
4.	Body	Ductile Iron ASTM a536 grade 65-45-12
5.	Long Bushing	Bronze ASTM B584 UNS C83600
6.	Stem	Stainless Steel ASTM A276 UNS S31600
7.	Disc	Stainless Steel ASTM A351 CF8M
8.	Taper Pin (2)	Stainless Steel ASTM A564 UNS S17400
9.	Seat	Nitrile ASTM D2000
		EPDM ASTM D2000
10.	Nameplate	Aluminum
11.	Short Bushing (2)	Bronze ASTM B584 UNS C83600
12.	0-ring	Nitrile ASTM D2000
13.	Кеу	Steel, ASTM A108 UNS C10450
14.	Screw	Steel, ANSI 1035 (6) 14" thru 18" (8) 20" & 24"

**NOTE: 24" is not available with SS trim

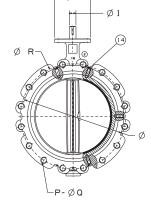
DIMENSIONS — WEIGHTS

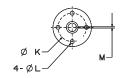
Si	ze	Α	Minimum.	В	C				G	н	<u> </u>
In.	mm	Dia.	Pipe I.D.	Dia.	Dia.	D	E	F	Body	Seat	Dia.
14″	350	13.12	13.02	14.77	17.20	14.49	1.77	26.77	3.00	3.13	1.244
16″	400	15.34	15.20	17.30	19.21	15.75	2.02	29.93	3.37	3.54	1.305
18″	450	17.34	17.09	19.31	21.22	16.61	2.02	31.54	4.12	4.29	1.494
20″	500	19.36	18.90	21.08	23.31	18.90	2.53	35.64	5.13	5.31	1.619
24″	600	23.33	23.05	25.71	32.09	22.13	2.76	42.96	5.96	6.14	1.993

DIMENSIONS — WEIGHTS


Si	ze	J	К	L	M	Р	0	R	T	WEI	GHT
In.	mm	Dia.	Dia.	Dia.	Drive Key		Dia.	Dia.	In.	Lbs.	Kg
14″	350	5.51	4.25	0.55	.250 x 1.125 WOODRUFF #809	12	1"-8 UNC	18.75	17.52	141	64
16″	400	7.76	6.25	0.83	.312 X.312 X 1.811 LONG	16	1"-8 UNC	21.25	20.08	199	90
18″	450	7.76	6.25	0.83	.375 X .375 X 1.881 LONG	16	1-1/8"-7 UNC	22.75	21.26	261	119
20″	500	7.76	6.25	0.83	.375 x .375 x 1.811 LONG	20	1-1/8"-7 UNC	25.00	24.02	395	179
24″	600	10.87	8.50	0.94	.500 x .500 x 2.362 LONG	20	1-1/4"-7 UNC	29.50	27.87	591	268

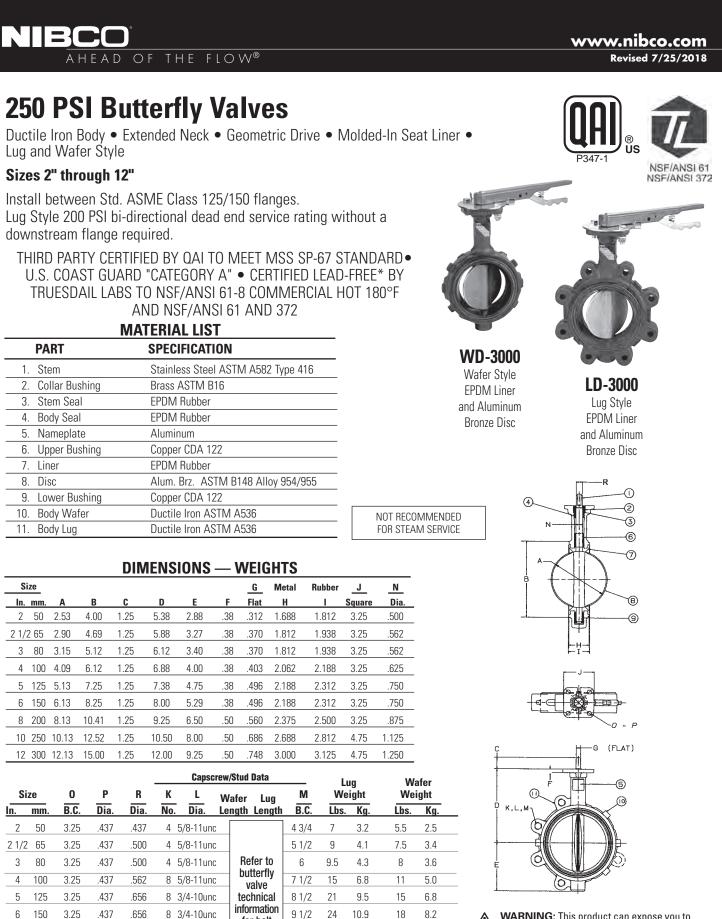
EPDM or Buna-N Liner Stainless Steel Disc





14" Reference Lower Shaft Well

ØJ



MARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

*Weighted average lead content ≤ 0.25%

Visit our website for the most current information.

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

*Weighted average lead content ≤ 0.25%

1.062 Visit our website for the most current information.

.781

1.000

8 3/4-10unc

12 7/8-9unc

12 7/8-9unc

.437

.562

.562

NIBCO INC. WORLD HEADQUARTERS • 1516 MIDDLEBURY ST. • ELKHART, IN 46516-4740 • USA • PH: 1.800.234.0227 TECH SERVICES PH: 1.888.446.4226 • FAX: 1.888.336.4226 • INTERNATIONAL OFFICE PH: +1.574.295.3327 • FAX: +1.574.295.3455

15.4

28.1

40.9

12.7

31.8

28

45.5 20.7

70

for bolt

lengths

11 3/4

14 1/4

17

34

62

90

In. 2

3

4

5

6

8

10 250

12

200

300

3.25

5.00

5.00

115

NSF/ANSI 372

250 PSI Butterfly Valves

Ductile Iron Body • Extended Neck • Geometric Drive • Molded-In Seat Liner • Lug and Wafer Style

Sizes 2" through 12"

Install between Std. ASME Class 125/150 flanges. Lug Style 250 PSI bi-directional dead end service rating without a downstream flange required.

THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67 STANDARD • U.S. COAST GUARD "CATEGORY A" • CERTIFIED LEAD-FREE* BY TRUESDAIL LABS TO ANSI 372

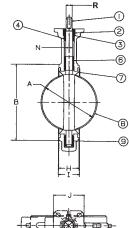
		MATERIAL LIST
	PART	SPECIFICATION
1.	Stem	Stainless Steel ASTM A582 Type 416
2.	Collar Bushing	Brass ASTM B16
3.	Stem Seal	EPDM Rubber
4.	Body Seal	EPDM Rubber
5.	Nameplate	Aluminum
6.	Upper Bushing	Copper CDA 122
7.	Liner	EPDM Rubber
8.	Disc	Ductile Iron ASTM A395 (nickel plated)
9.	Lower Bushing	Copper CDA 122
10.	Body Wafer	Ductile Iron ASTM A536
11.	Body Lug	Ductile Iron ASTM A536

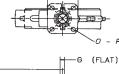
DIMENSIONS — WEIGHTS

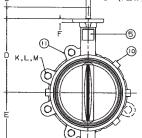
Si	ze							G	Metal	Rubber	J	Ν
In.	Mm.	Α	В	C	D	Ε	F	Flat	H	1	Square	Dia.
2	50	2.53	4.00	1.25	5.38	2.88	.38	.312	1.688	1.812	3.25	.500
2 1/2	65	2.90	4.69	1.25	5.88	3.27	.38	.370	1.812	1.938	3.25	.562
3	80	3.15	5.12	1.25	6.12	3.40	.38	.370	1.812	1.938	3.25	.562
4	100	4.09	6.12	1.25	6.88	4.00	.38	.403	2.062	2.188	3.25	.625
5	125	5.13	7.25	1.25	7.38	4.75	.38	.496	2.188	2.312	3.25	.750
6	150	6.13	8.25	1.25	8.00	5.29	.38	.496	2.188	2.312	3.25	.750
8	200	8.13	10.41	1.25	9.25	6.50	.50	.560	2.375	2.500	3.25	.875
10	250	10.13	12.52	1.25	10.50	8.00	.50	.686	2.688	2.812	4.75	1.125
12	300	12.13	15.00	1.25	12.00	9.25	.50	.748	3.000	3.125	4.75	1.250
					0		/04	Data				

						Capscr	ew/Stud Data		Lı		\M/-	afer
Si	ze	0	Р	<u>R</u>	К	L	Wafer Lug	M		ight		ight
<u>In. ı</u>	nm.	B.C.	Dia.	Dia.	No.	Dia.	Length Length	B.C.	Lbs.	Kg.	Lbs.	Kg.
2	50	3.25	.437	.437	45	5/8-11unc		4 3/4	7	3.2	5.5	2.5
2 1/2	65	3.25	.437	.500	4 5	5/8-11unc		5 1/2	9	4.1	7.5	3.4
3	80	3.25	.437	.500	45	5/8-11unc		6	9.5	4.3	8	3.6
4	100	3.25	.437	.562	85	5/8-11unc	butterfly valve	7 1/2	15	6.8	11	5.0
5	125	3.25	.437	.656	83	3/4-10unc	technical	8 1/2	21	9.5	15	6.8
6	150	3.25	.437	.656	83	3/4-10unc	information for bolt	9 1/2	24	10.9	18	8.2
8	200	3.25	.437	.781	83	3/4-10unc		11 3/4	34	15.4	28	12.7
10	250	5.00	.562	1.000	12	7/8-9unc		14 1/4	62	28.1	45.5	20.7
12	300	5.00	.562	1.062	12	7/8-9unc		17	90	40.9	70	31.8

For actuated service where a lower torque is required use NIBCO Fig. No. WDLXXX-0 or LDLXXX-0 series, sizes 2" thru 12" only. Maximum pressure rating of 100 PSI for wet application and 50 PSI for dry application


*Weighted average lead content $\leq 0.25\%$




WD-3010 Wafer Style EPDM Liner and Ductile Disc

NOT RECOMMENDED

FOR STEAM SERVICE

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

Visit our website for the most current information.

Ductile Iron Body • Extended Neck • Geometric Drive • Molded-In Seat Liner • Lug and Wafer Style

Sizes 2" through 12"

Install between Std. ASME Class 125/150 flanges. Lug style 200 PSI bi-directional dead end service rating without a downstream flange required.

THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67 STANDARD • U.S. COAST GUARD "CATEGORY A" • CERTIFIED LEAD-FREE* BY TRUESDAIL LABS TO ANSI 372

MATERIAL LIST

PART	SPECIFICATION
1. Stem	Stainless Steel ASTM A582 Type 416
2. Collar Bushing	Brass ASTM B16
3. Stem Seal	Buna-N Rubber Nitrile
4. Body Seal	Buna-N Rubber Nitrile
5. Nameplate	Aluminum
6. Upper Bushing	Copper CDA 122
7. Liner	Buna-N Rubber Nitrile
8. Disc	Alum. Brz. ASTM B148 Alloy 954/955
9. Lower Bushing	Copper CDA 122
10. Body Wafer	Ductile Iron ASTM A536
11. Body Lug	Ductile Iron ASTM A536

DIMENSIONS — WEIGHTS

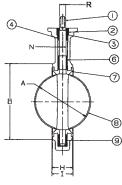
Si	ze							G	Metal	Rubber	J	Ν
In.	mm.	Α	В	C	D	Ε	F	Flat	Н	1	Square	Dia.
2	50	2.53	4.00	1.25	5.38	2.88	.38	.312	1.688	1.812	3.25	.500
2 1/2	65	2.90	4.69	1.25	5.88	3.27	.38	.370	1.812	1.938	3.25	.562
3	80	3.15	5.12	1.25	6.12	3.40	.38	.370	1.812	1.938	3.25	.562
4	100	4.09	6.12	1.25	6.88	4.00	.38	.403	2.062	2.188	3.25	.625
5	125	5.13	7.25	1.25	7.38	4.75	.38	.496	2.188	2.312	3.25	.750
6	150	6.13	8.25	1.25	8.00	5.29	.38	.496	2.188	2.312	3.25	.750
8	200	8.13	10.41	1.25	9.25	6.50	.50	.560	2.375	2.500	3.25	.875
10	250	10.13	12.52	1.25	10.50	8.00	.50	.686	2.688	2.812	4.75	1.125
12	300	12.13	15.00	1.25	12.00	9.25	.50	.748	3.000	3.125	4.75	1.250

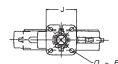
						Capscre	w/Stud Data				14/	
Si	ze	0	Р	R	К	<u> </u>	Wafer Lug	М		ig eight		afer ight
In.	mm.	B.C.	Dia.	Dia.	No.		ength Length	B.C.	Lbs.	Kg.	Lbs.	Kg.
2	50	3.25	.437	.437	4 5	j/8-11unc		4 3/4	7	3.2	5.5	2.5
2 1/2	65	3.25	.437	.500	4 5	j/8-11unc		5 1/2	9	4.1	7.5	3.4
3	80	3.25	.437	.500	4 5	j/8-11unc	Refer to	6	9.5	4.3	8	3.6
4	100	3.25	.437	.562	85	5/8-11unc	butterfly valve	7 1/2	15	6.8	11	5.0
5	125	3.25	.437	.656	83	8/4-10unc	technical	8 1/2	21	9.5	15	6.8
6	150	3.25	.437	.656	83	3/4-10unc	information for bolt	9 1/2	24	10.9	18	8.2
8	200	3.25	.437	.781	83	3/4-10unc	lengths	11 3/4	34	15.4	28	12.7
10	250	5.00	.562	1.000	12	7/8-9unc		14 1/4	62	28.1	45.5	20.7
12	300	5.00	.562	1.062	12	7/8-9unc		17	90	40.9	70	31.8

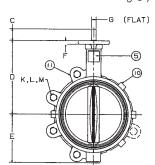
Visit our website for the most current information.

NIBCO INC. WORLD HEADQUARTERS • 1516 MIDDLEBURY ST. • ELKHART, IN 46516-4740 • USA • PH: 1.800.234.0227 TECH SERVICES PH: 1.888.446.4226 • FAX: 1.888.336.4226 • INTERNATIONAL OFFICE PH: +1.574.295.3327 • FAX: +1.574.295.3455 www.nibco.com

WD-3100 Wafer Style Buna-N Liner

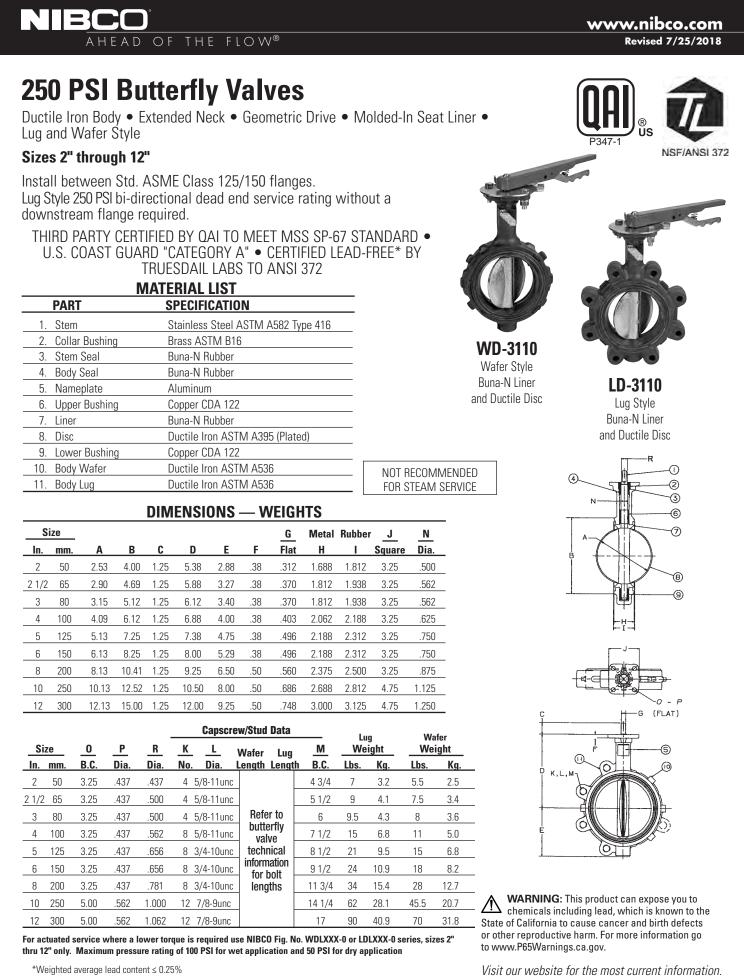

and Aluminum


Bronze Disc


RECOMMENDED

STEAM SERVICE

LD-3100 Lug Style Buna-N Liner and Aluminum Bronze Disc



WARNING: This product can expose you to hemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

*Weighted average lead content ≤ 0.25%

*Weighted average lead content ≤ 0.25%

Ductile Iron Body • Extended Neck • Geometric Drive • Molded-In Seat Liner • Lug and Wafer Style • 316 S.S. Trim

Sizes 2" through 12"

Install between Std. ASME Class 125/150 flanges. Lug Style 250 PSI bi-directional dead end service rating without a downstream flange required.

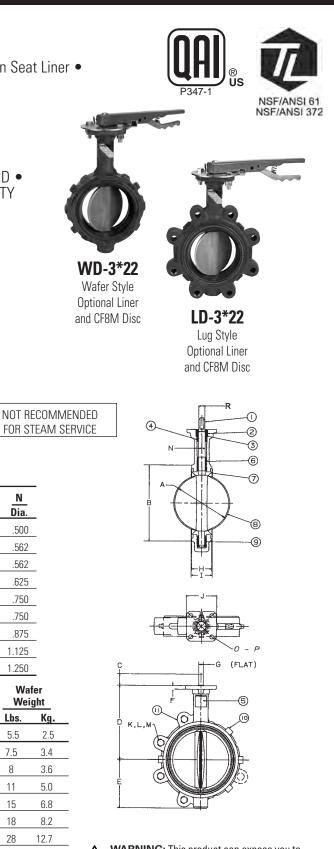
THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67 STANDARD • U.S. COAST GUARD "CATEGORY A" • LD/WD-3022 THIRD PARTY CERTIFIED BY TRUESDAIL LABS TO NSF/ANSI 61 AND 372

MATERIAL LIST									
	PART	SPECIFICATION							
1.	Stem	Stainless Steel ASTM A564 Type 17-4PH							
2.	Collar Bushing	Stainless Steel ASTM A276 Type 316							
3.	Stem Seal	Options: See Below*							
4.	Body Seal	Options: See Below*							
5.	Nameplate	Aluminum							
6.	Upper Bushing	Stainless Steel ASTM A276 Type 316							
7.	Liner	Options: See Below*							
8.	Disc	Stainless Steel ASTM A743 Grade CF8M							
9.	Lower Bushing	Stainless Steel ASTM A276 Type 316							
10.	Body Wafer	Ductile Iron ASTM A536							
11.	Body Lug	Ductile Iron ASTM A536							
*0									

*Optional Liners/Seals: 0 - EPDM 1 - Buna-N (Nitrile) 2 - Fluoroelastomer Note: only EPDM liners meet NSF 61 certification.

DIMENSIONS — WEIGHTS

Si	ize							G	Metal	Rubber	<u> </u>	Ν
<u>In.</u>	mm.	Α	B	C	D	E	F	Flat	H	<u> </u>	Square	Dia.
2	50	2.53	4.00	1.25	5.38	2.88	.38	.312	1.688	1.812	3.25	.500
2 1/2	65	2.90	4.69	1.25	5.88	3.27	.38	.370	1.812	1.938	3.25	.562
3	80	3.15	5.12	1.25	6.12	3.40	.38	.370	1.812	1.938	3.25	.562
4	100	4.09	6.12	1.25	6.88	4.00	.38	.403	2.062	2.188	3.25	.625
5	125	5.13	7.25	1.25	7.38	4.75	.38	.496	2.188	2.312	3.25	.750
6	150	6.13	8.25	1.25	8.00	5.29	.38	.496	2.188	2.312	3.25	.750
8	200	8.13	10.41	1.25	9.25	6.50	.50	.560	2.375	2.500	3.25	.875
10	250	10.13	12.52	1.25	10.50	8.00	.50	.686	2.688	2.812	4.75	1.125
12	300	12.13	15.00	1.25	12.00	9.25	.50	.748	3.000	3.125	4.75	1.250


						Capscr	w/Stud Data		եւ	ıg	Wa	ıfer
Si	ze	0	<u>P</u>	R	K	L	Wafer Lug	M	We	eight	We	ight
In. r	nm.	B.C.	Dia.	Dia.	No.	Dia.	Length Lengtl	n B.C.	Lbs.	Kg.	Lbs.	Kg.
2	50	3.25	.437	.437	45	i/8-11unc		4 3/4	7	3.2	5.5	2.5
2 1/2	65	3.25	.437	.500	45	i/8-11unc		5 1/2	9	4.1	7.5	3.4
3	80	3.25	.437	.500	45	i/8-11unc	Refer to	6	9.5	4.3	8	3.6
4	100	3.25	.437	.562	85	i/8-11unc	butterfly valve	7 1/2	15	6.8	11	5.0
5	125	3.25	.437	.656	83	/4-10unc	technical	8 1/2	21	9.5	15	6.8
6	150	3.25	.437	.656	83	/4-10unc	information for bolt	9 1/2	24	10.9	18	8.2
8	200	3.25	.437	.781	83	/4-10unc	lengths	11 3/4	34	15.4	28	12.7
10	250	5.00	.562	1.000	12	7/8-9unc		14 1/4	62	28.1	45.5	20.7
12	300	5.00	.562	1.062	12	7/8-9unc		17	90	40.9	70	31.8

For actuated service where a lower torque is required use NIBCO Fig. No. WDLXXX-0 or LDLXXX-0 series, sizes 2" thru 12" only. Maximum pressure rating of 100 PSI for wet application and 50 PSI for dry application.

Visit our website for the most current information.

www.nibco.com

Revised 7/25/2018

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

*Weighted average lead content ≤ 0.25%

250 lb. WWP UL/FM Butterfly Valves

Fire Protection Valve • Wafer or Lug Style Body • Molded-In Seat • Accepts Internal Supervisory Switches

250 PSI/17.2 bar non-shock cold water

THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67 STANDARD • UL/ULC LISTED • FMRC APPROVED • UL LISTED FOR INDOOR AND OUTDOOR SERVICE • CALIFORNIA STATE FIRE MARSHAL LISTING NO. 7770-1243:104 • U.S. COAST GUARD "CATEGORY A" • CERTIFIED LEAD-FREE* BY TRUESDAIL LABS TO ANSI 372

		MATERIAL LIST
	PART	SPECIFICATION
1.	Stem	Stainless Steel ASTM 582 Type 416
2.	Collar Bushing	Brass ASTM B16
3.	Upper Bushing	Copper Alloy CDA 122
4.	Stem Seal	EPDM
5.	Body Seal	EPDM
6.	Disc	Ductile Iron ASTM 395 (Nickel Plated)
7.	Liner	EPDM
8.	Lower Bushing	Copper Alloy CDA 122
9.	Nameplate	Aluminum
10.	Body	Ductile Iron ASTM A536
11.	Gear Operator	Cast Iron and Steel
12.	Indicator Flag	Cast Iron
13.	Handwheel	Cast Iron

** -8 version has two factory mounted internal supervisory switches. -4 version no switches.

Note: wafer body will mate with ANSI or ISO flanges. 0.D. of wafer body notched to fit ISO bolt circle. Lug body available with ISO flange dimensions and metric bolt hole threads.

For dead-end service use lug style (rated 200 PSI for this service).

DIMENSIONS—	-WEIGHTS—	-QUANTITIES

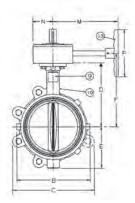
		Dimensions																			
S	ize	-	1	E	3		;)		E		F		G		<u>I</u>				J
In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In. I	mm.
2	50	2.53	64	4.88	124	4.62	117	5.38	137	2.88	73	6.89	175	12.75	324	1.68	43	1.81	46	2.91	74
21/2	65	2.90	74	5.62	143	5.12	130	5.88	149	3.25	83	7.36	187	13.63	346	1.81	46	1.94	49	2.91	74
3	80	3.17	81	6.12	155	5.50	140	6.12	155	3.38	86	7.60	193	14.00	356	1.81	46	1.94	49	2.91	74
4	100	4.17	106	7.00	178	8.25	210	6.88	175	4.00	102	8.39	213	15.38	391	2.06	52	2.19	56	2.91	74
5	125	5.17	131	8.25	210	9.38	238	7.38	187	4.75	121	8.86	225	16.63	422	2.19	56	2.31	59	2.91	74
6	150	6.17	157	9.25	235	10.25	260	8.00	203	5.25	133	9.49	241	17.75	451	2.19	56	2.31	59	2.91	74
8	200	8.17	208	11.62	295	12.38	314	9.25	235	6.50	165	10.75	273	20.25	514	2.38	60	2.50	64	2.91	74
10	250	10.17	258	14.25	362	15.50	394	10.50	267	8.00	203	12.28	312	23.50	597	2.68	69	2.81	71	3.90	99
12	300	12.17	309	16.75	425	18.25	464	12.00	305	9.25	235	13.78	350	26.25	667	3.00	76	3.12	79	3.90	99

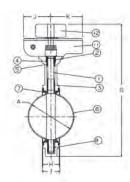
	Dimensions												Flar	nge/St	ud Data				Wei	ght	
9	Size		К	I	M		N		Р		Di	a.	Wa	afer	Lug	I	BC	Lu	g	Wat	fer
In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	No.	In.	mm.	ln.	mm.	In. mm.	In.	mm.	Lbs.	Kg.	Lbs.	Kg.
2	50	3.54	90	5.82	148	2.13	54	5.9	150	4	5⁄8	16				4.75	121	23	11	21	10
21	⁄2 65	3.54	90	5.82	148	2.13	54	5.9	150	4	5⁄8	16		Defe		5.50	140	25	11	24	11
3	80	3.54	90	5.82	148	2.13	54	5.9	150	4	5⁄8	16		Refe butte		6.00	152	26	12	24	11
4	100	3.54	90	5.82	148	2.13	54	5.9	150	8	5⁄8	16		val		7.50	191	31	14	27	12
5	125	3.54	90	7.64	194	2.13	54	5.9	150	8	3⁄4	20		techr	-	8.50	216	37	17	31	14
6	150	3.54	90	7.64	194	2.13	54	5.9	150	8	3⁄4	20]	inform		9.50	241	40	18	34	15
8	200	3.54	90	7.91	201	2.13	54	9.8	250	8	3⁄4	20		for t		11.75	298	55	25	49	22
10	250	3.98	101	9.49	241	3.03	77	11.8	300	12	7⁄8	22		leng	tns	14.25	362	95	43	78	35
12	300	3.98	101	9.49	241	3.03	77	11.8	300	12	7⁄8	22				17.00	432	123	56	103	47

*Weighted average lead content ≤ 0.25%

www.nibco.com

Revised 7/25/2018




WD-3510-8** Wafer (4" Shown)

LD-3510-8**

Lug

(Not Shown)

(10" Shown)

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

Visit our website for the most current information.

57 11 75 298 55 25

www.nibco.com

Revised 7/25/2018

250 PSI WWP UL/FM Butterfly Valves

Designed for normally closed position monitoring

AHEAD OF THE FLOW®

Fire Protection Valve • Lug or Wafer Style Body • Factory Mounted Monitoring Switches • Mates with C.I. Class 125 and Steel Class 150 Flanges

250 PSI/17.2 bar non-shock cold water

THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67 STANDARD • UL/ULC LISTED** • FM APPROVED** • CERTIFIED LEAD FREE BY TRUESDAIL LABS 21/2" - 8" UL LISTED FOR INDOOR AND OUTDOOR SERVICE

Warning: these valves are <u>not</u> to be used between the water source and sprinkler head.

		MATERIAL LIST
PART	1	SPECIFICATION
1.	Stem	Stainless Steel ASTM 582 Type 416
2.	Collar Bushing	Brass ASTM B16
3.	Upper Bushing	Copper Alloy CDA 122
4.	Stem Seal	EPDM
5.	Body Seal	EPDM
6.	Disc	Ductile Iron ASTM 395 (Nickel Plated)
7.	Liner	EPDM
8.	Lower Bushing	Copper Alloy CDA 122
9.	Nameplate	Aluminum
10.	Body	Ductile Iron ASTM A536
11.	Gear Operator	Cast Iron and Steel
12.	Indicator Flag	Cast Iron
13.	Handwheel	Cast Iron
10.		00011011

Note: wafer body will mate with ANSI or ISO flanges. O.D. of wafer body notched to fit ISO bolt circle.

D

Ρ

54 5.9 150

54 5.9

54 5.9

**Compliance with standards for butterfly valves for fire protection UL1091 & FM1112

150 4

150

150

250 8

mm. In.

6.88 175 4.00 102

8.17 208 11.62 295 12.38 314 9.25 235 6.50 165 10.75 273 20.25 514 2.38 60

mm. No.

4

8

8

5.88 149 3.25

6.12 155 3.38

Comes with two factory mounted internal supervisory switches. Use switch Figure No. TS-4. See page 4 of I & M manual for

DIMENSIONS—WEIGHTS—QUANTITIES Dimensions

F

8.00 203 5.25 133 9.49 241

mm.

83

86

Dia

In. mm.

F

In. mm.

7.36 187

7.60 193

8.39 213

Wafer

In. mm.

⁵/8 16 4.25 108 1.50 38

5/8 16 4.25 108 1.50 38

5/8 16 5.00 127 2.00 51

3/4 20 5.25 133 2.00 51

3/4 20 5.75 146 2.25

G

13.63 346 1.81

14.00 356 1.81

15.38 391 2.06

17.75 451 2.19

Flange/Stud Data

Lug

In. mm.

In. mm.

н

In. mm.

46 1.94 49 2.91 74

46

52

56 2.31 59 2.91 74

BC

In.

5.50 140 25 11

6.00 152 26 12

7.50 191 31 14

9.50

241 40

.

In. mm.

74

74

Wafer

Lbs. Kg.

24 11

24 11

27 12

34 15

49 22

2.91

2.91

Weight

18

In. mm.

49

Lug

mm. Lbs. Kg.

1.94

2.19 56 2.91 74

2.50 64

For dead-end service use lug style (rated 250 PSI for this service).

В

5.62 143

6.12 155

7.00 178

Μ

In. mm.

5.82 148 2.13

5.82 148 2.13

7.64 194 2.13

7.91 201 2.13 54 9.8

5.82 148

C

5.12 130

5.50 140

8.25 210

Ν

In. mm. In.

2.13 54 5.9

9.25 235 10.25 260

Dimensions

installation & wiring instructions

Δ

81

106

K

In. mm.

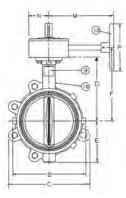
3.54 90

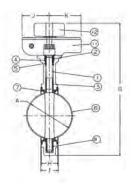
3.54 90

3.54 90

3.54 90

90


In. mm. In. mm. In. mm. In.


3.17

WD-3510-C-8

LD-3510-C-8

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

Visit our website for the most current information.

Size

In. mm.

21/2 65 2.90 74

3 80

4 100 4.17

6 150 6.17 157

8

200

Size

In. mm.

4 100

80

150

200

2¹/₂ 65 3.54

3

6

8

Ductile Iron Body • Extended Neck • Geometric Drive • Molded-In Seat Liner • Lug and Wafer Style (not intended for air lines)

Sizes 2" through 12"

Install between Std. ASME Class 125/150 flanges. 285 PSI Bi-directional dead end service with no need for a downstream flange.

THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67 STANDARD • U.S. COAST GUARD "CATEGORY A" • CERTIFIED LEAD-FREE* BY TRUESDAIL LABS TO NSF/ANSI 61 AND 372

		MATERIAL LIST
	PART	SPECIFICATION
1.	Stem	Stainless Steel ASTM A582 Type 416
2.	Collar Bushing	Stainless Steel ASTM A236 Type 316
3.	Stem Seal	EPDM Rubber
4.	Body Seal	EPDM Rubber
5.	Nameplate	Aluminum
6.	Upper Bushing	Stainless Steel ASTM A276 Type 316
7.	Liner	EPDM Rubber
8.	Disc	Stainless Steel ASTM 743 Grade CF8M
9.	Lower Bushing	Stainless Steel ASTM A276 Type 316
10.	Body Wafer	Ductile Iron ASTM A536
11.	Body Lug	Ductile Iron ASTM A536

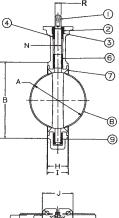
	DIMENSIONS — WEIGHTS													
S	ize							G	Metal	Rubber	J	Ν		
In.	mm.	Α	В	C	D	E	F	Flat	Н	I	Square	Dia.		
2	50	2.53	4.00	1.25	5.38	2.88	.38	.312	1.688	1.812	3.25	.500		
2 1/2	2 65	2.90	4.69	1.25	5.88	3.27	.38	.370	1.812	1.938	3.25	.562		
3	80	3.15	5.12	1.25	6.12	3.40	.38	.370	1.812	1.938	3.25	.562		
4	100	4.09	6.12	1.25	6.88	4.00	.38	.403	2.062	2.188	3.25	.625		
5	125	5.13	7.25	1.25	7.38	4.75	.38	.496	2.188	2.312	3.25	.750		
6	150	6.13	8.25	1.25	8.00	5.29	.38	.496	2.188	2.312	3.25	.750		
8	200	8.13	10.41	1.25	9.25	6.50	.50	.560	2.375	2.500	3.25	.875		
10	250	10.13	12.52	1.25	10.50	8.00	.50	.686	2.688	2.812	4.75	1.125		
12	300	12.13	15.00	1.25	12.00	9.25	.50	.748	3.000	3.125	4.75	1.250		

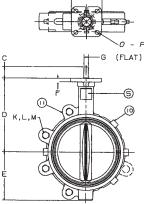
__ _ _ _ _

						Capsci	rew/Stud	Data				144	afer
Si	ze	0	Р	R	К	L	Wafer	Lug	M	Lı We	ig ight		ight
ln.	mm.	B.C.	Dia.	Dia.	No.	Dia.	Length		B.C.	Lbs.	Kg.	Lbs.	Kg.
_ 2	50	3.25	.437	.437	4 5	5/8-11unc				7	3.2	5.5	2.5
2 1/2	65	3.25	.437	.500	4 5	5/8-11unc				9	4.1	7.5	3.4
3	80	3.25	.437	.500	4 5	5/8-11unc		Ref	L	9.5	4.3	8	3.6
4	100	3.25	.437	.562	8 !	5/8-11unc		to B		15	6.8	11	5.0
5	125	3.25	.437	.656	8 3	3/4-10unc		Techr Inform		21	9.5	15	6.8
6	150	3.25	.437	.656	8 3	3/4-10unc		for t		24	10.9	18	8.2
8	200	3.25	.437	.781	8 3	3/4-10unc		leng	ths	34	15.4	28	12.7
10	250	5.00	.562	1.000	12	7/8-9unc				62	28.1	45.5	20.7
12	300	5.00	.562	1.062	12	7/8-9unc				90	40.9	70	31.8

*Weighted average lead content ≤ 0.25%

NSF/ANSI 61 NSF/ANSI 372


WD-5022 Wafer Style EPDM Liner and Stainless Steel Disc


NOT RECOMMENDED

FOR STEAM SERVICE

LD-5022

Lug Style EPDM Liner and Stainless Steel Disc

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

Large Diameter Butterfly Valves

LD1000/2000 Series

Ductile Iron

Lug body

EPDM or Buna-N liner materials

- 14" thru 48" size range
- 150/200 PSI WOG
- Bubble tight shut off at full rated pressure
- Bidirectional dead end service Sizes 14"- 24" 150 psi Sizes 30" - 48" 100 psi
- Extended neck for 2" of insulation
- Aluminum bronze, 316SS, nickel plated ductile iron disc
- 416 stainless steel stem
- Designed to meet MSS SP-67 standard

Ductile Iron Body • Cartridge Liner • Lug Style

Sizes 14", 16", 18", 20", and 24"

Install between Std. ASME Class 125/150 flanges. 100 PSI bi-directional dead end service rating without a downstream flange. Do NOT install between AWWA C115/A21.5 type flanges.

THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67 STANDARD • CERTIFIED LEAD -FREE* BY IAPMO R&T TO NSF/ANSI 372

		MATERIAL LIST
	PART	SPECIFICATION
1.	Screw	Steel, ANSI 1035 (2) 16" & 18" (4) 20" & 24"
2.	Bottom Plate	Ductile Iron ASTM A536 grade 65-45-12
3.	O-ring	Nitrile ASTM D2000
4.	Body	Ductile Iron ASTM A536 grade 65-45-12
5.	Long Bushing	Bronze ASTM B584 UNS C83600
6.	Stem	Stainless Steel ASTM A582 UNS S41600 Stainless Steel ASTM A276 UNS S31600
7.	Disc	Aluminum bronze ASTM B148 UNS C95400 Ductile Iron ASTM A536 grade 65-45-12 Nickel Plated Stainless Steel ASTM A351 CF8M
8.	Taper Pin (2)	Stainless Steel ASTM A564 UNS S17400
9.	Seat	Nitrile ASTM D2000 EPDM ASTM D2000
10.	Nameplate	Aluminum
11.	Short Bushing (2)	Bronze ASTM B584 UNS C83600
12.	0-ring	Nitrile ASTM D2000
13.	Кеу	Steel, ASTM A108 UNS C10450
14.	Screw	Steel, ANSI 1035 (6) 14" thru 18" (8) 20" & 24"
15.	Retainer Plate	ASTM A570 GR33 Galvanized
16.	Bolts M6	ASTM A570 GR33 Galvanized

DIMENSIONS — WEIGHTS

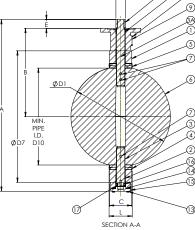
											_
S	ze	Α	Minimum.	В	C				G	H	<u> </u>
In.	mm	Dia.	Pipe I.D.	Dia.	Dia.	D	E	F	Body	Seat	Dia.
14″	350	13.12	13.02	14.77	17.20	14.49	1.77	26.77	3.00	3.13	1.244
16″	400	15.34	15.20	17.30	19.21	15.75	2.02	29.93	3.37	3.54	1.305
18″	450	17.34	17.09	19.31	21.22	16.61	2.02	31.54	4.12	4.29	1.494
20″	500	19.36	18.90	21.08	23.31	18.90	2.53	35.64	5.13	5.31	1.619
24″	600	23.33	23.05	25.71	32.09	22.13	2.76	42.96	5.96	6.14	1.993

DIMENSIONS — WEIGHTS

Si	ze	J	K	L	M	Р	0	R	T	WEI	GHT
In.	mm	Dia.	Dia.	Dia.	Drive Key		Dia.	Dia.	In.	Lbs.	Kg
14″	350	5.51	4.25	0.55	.250 x 1.125 WOODRUFF #809	12	1"-8 UNC	18.75	17.52	141	64
16″	400	7.76	6.25	0.83	.312 X.312 X 1.811 LONG	16	1"-8 UNC	21.25	20.08	199	90
18″	450	7.76	6.25	0.83	.375 X .375 X 1.881 LONG	16	1-1/8"-7 UNC	22.75	21.26	261	119
20″	500	7.76	6.25	0.83	.375 x .375 x 1.811 LONG	20	1-1/8"-7 UNC	25.00	24.02	395	179
24″	600	10.87	8.50	0.94	.500 x .500 x 2.362 LONG		1-1/4"-7 UNC	29.50	27.87	591	268

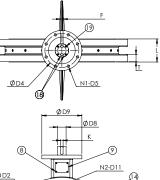
LD-1000/LD-1100

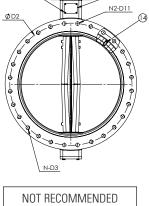
Lug Style EPDM or Buna-N Liner Aluminum Bronze Disc


LD-1010/LD-1110 Lug Style

EPDM or Buna-N Liner .Ductile Iron Disc

LD-1022/LD-1122


Lug Style EPDM or Buna-N Liner Stainless Steel Disc



14" Reference

FOR STEAM SERVICE

MARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

*Weighted average lead content ≤ 0.25%

Visit our website for the most current information.

Ductile Iron Body • Cartridge Liner • Double Flanged

Sizes 30", 36", 42" and 48"

Install between ANSI B16.10 Class 125 or ANSI B16.47 Class 150 flanges. 100 PSI bi-directional dead end service rating without a downstream flange. Do NOT install between AWWA C115/A21.5 type flanges.

THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67 STANDARD

		MATERIAL LIST
	PART	SPECIFICATION
1.	Body	Ductile Iron ASTM A536
2.	Bushing	Bronze ASTM B584 Grade C83600
3.	Lower Stem	Stainless Steel ASTM A582 Type 416
		Stainless Steel ASTM A276 Type 316SS
За.	Upper Stem	Stainless Steel ASTM A582 Type 416
		Stainless Steel ASTM A276 Type 316SS
4.	Seat Back Ring	Phenolic Resin, Aluminum B26
		30" - 36" eight set screws in backing
		42" - 48" ten set screws in backing
5.	Seat	Rubber - BUNA (NBR)
		Rubber - EPDM
6.	Disc	Aluminum Bronze ASTM B148 C95400
		Ductile Iron ASTM A536 65-45-12 (Nickel Plated)
		Stainless Steel ASTM A351 Grade CF8M
7.	Taper Pin (3)	Stainless Steel ASTM A582 Type 416 or ASTM 564
8.	Rivet	Steel
9.		Aluminum
10.	5	Bronze ASTM B584 C83600
11.	Flat Key	Steel ASTM A108 1045
12.	5	Bronze ASTM B584 C83600
13.	Socket Bolt	Steel ASTM A307
14.	O-Ring	Rubber BUNA (NBR)
15.		Steel ASTM A108 1035
16.	0	Bearing Steel
17.	Washer	Steel
18.	Retainer Plate	Steel Galvanized, ASTM A570 GR33
19.	Bolts M6	Steel Galvanized, ASTM A570 GR33
20.	O-Ring	Rubber Buna (NBR)

Si	ize	<u>D8</u>									
In.	mm.	D1	D2	D4	D5	D7	Dia.	D9	D10	D11	C
30	750	29.30	36.00	10.00	0.71	38.74	2.50	11.81	28.56	11/4-7UNC	6.57
36	900	34.04	42.75	10.00	0.71	46.00	2.95	11.81	33.09	11/2-6UNC	8.00
42	1050	40.55	49.50	11.73	0.87	53.00	3.74	13.78	39.33	11/2-6UNC	9.88
48	1200	45.67	56.00	11.73	0.87	59.50	4.13	13.78	44.35	11/2-6UNC	10.88

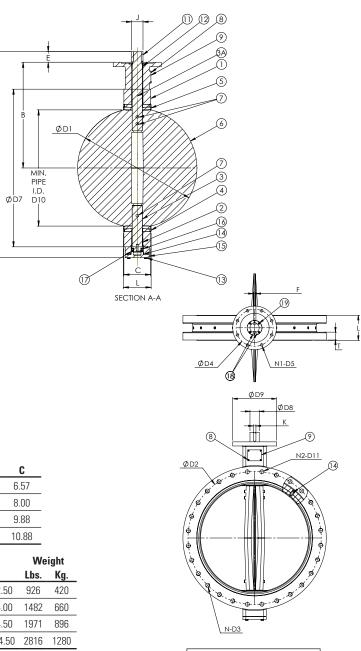
Si	ze										К	We	ight
In.	mm.	L	Α	В	Ε	F	J	N1	N2	Т	Key Size	Lbs.	Kg.
30	750	6.81	50.63	26.00	2.60	0.709	2.809	8	28	2.12	.709 x .433 x 2.50	926	420
36	900	8.31	58.82	28.35	4.65	0.787	3.307	8	32	2.38	.787 x .472 x 4.00	1482	660
42	1050	10.28	70.28	33.78	5.91	0.984	4.134	8	36	2.62	.984 x .551 x 4.50	1971	896
48	1200	11.26	76.96	37.04	5.91	1.102	4.606	8	44	2.75	1.104 x .630 x 4.50	2816	1280

MARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

Visit our website for the most current information.

LD-1000/LD-1100

Lug Style EPDM or Buna-N Liner Aluminum Bronze Disc



LD-1010

Lug Style EPDM Liner Ductile Iron Disc

LD-1022

Lug Style EPDM Liner Stainless Steel Disc

NOT RECOMMENDED

FOR STEAM SERVICE

Ductile Iron Body • Cartridge Liner • Lug Style

Sizes 14", 16", 18", 20", and 24"

Install between Std. ASME Class 125/150 flanges. Is 150 PSI bi-directional dead end service rating without a downstream flange. Do NOT install between AWWA C115/A21.5 type flanges.

THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67 STANDARD • CERTIFIED LEAD-FREE* BY TRUESDAIL LABS TO NSF/ANSI 372

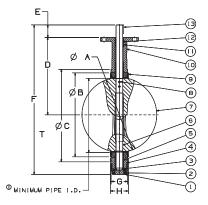
MATERIAL LIST

PART	SPECIFICATION
Screw	Steel, ANSI 1035 (2) 16" & 18" (4) 20" & 24"
Bottom Plate	Ductile Iron ASTM A536 grade 65-45-12
O-ring	Nitrile ASTM D2000
Body	Ductile Iron ASTM a536 grade 65-45-12
Long Bushing	Bronze ASTM B584 UNS C83600
Stem	Stainless Steel ASTM A276 UNS S31600
Disc	Stainless Steel ASTM A351 CF8M
Taper Pin (2)	Stainless Steel ASTM A564 UNS S17400
Seat	Nitrile ASTM D2000
	EPDM ASTM D2000
Nameplate	Aluminum
Short Bushing (2)	Bronze ASTM B584 UNS C83600
O-ring	Nitrile ASTM D2000
Кеу	Steel, ASTM A108 UNS C10450
Screw	Steel, ANSI 1035 (6) 14" thru 18" (8) 20" & 24"
	Screw Bottom Plate O-ring Body Long Bushing Stem Disc Taper Pin (2) Seat Nameplate Short Bushing (2) O-ring Key

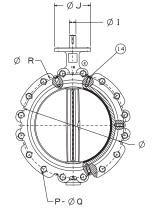
**NOTE: 24" is not available with SS trim

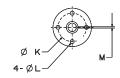
DIMENSIONS — WEIGHTS

Si	ze	Α	Minimum.	В	C				G	н	<u> </u>
In.	mm	Dia.	Pipe I.D.	Dia.	Dia.	D	E	F	Body	Seat	Dia.
14″	350	13.12	13.02	14.77	17.20	14.49	1.77	26.77	3.00	3.13	1.244
16″	400	15.34	15.20	17.30	19.21	15.75	2.02	29.93	3.37	3.54	1.305
18″	450	17.34	17.09	19.31	21.22	16.61	2.02	31.54	4.12	4.29	1.494
20″	500	19.36	18.90	21.08	23.31	18.90	2.53	35.64	5.13	5.31	1.619
24″	600	23.33	23.05	25.71	32.09	22.13	2.76	42.96	5.96	6.14	1.993


DIMENSIONS — WEIGHTS

Si	ze	J	К	L	M	Р	0	R	T	WEI	GHT
In.	mm	Dia.	Dia.	Dia.	Drive Key		Dia.	Dia.	In.	Lbs.	Kg
14″	350	5.51	4.25	0.55	.250 x 1.125 WOODRUFF #809	12	1"-8 UNC	18.75	17.52	141	64
16″	400	7.76	6.25	0.83	.312 X.312 X 1.811 LONG	16	1"-8 UNC	21.25	20.08	199	90
18″	450	7.76	6.25	0.83	.375 X .375 X 1.881 LONG	16	1-1/8"-7 UNC	22.75	21.26	261	119
20″	500	7.76	6.25	0.83	.375 x .375 x 1.811 LONG	20	1-1/8"-7 UNC	25.00	24.02	395	179
24″	600	10.87	8.50	0.94	.500 x .500 x 2.362 LONG	20	1-1/4"-7 UNC	29.50	27.87	591	268





14" Reference Lower Shaft Well

MARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

*Weighted average lead content ≤ 0.25%

Visit our website for the most current information.

Ductile Iron Body • Cartridge Liner • Lug Style

Sizes 14", 16", 18", 20", and 24"

Install between Std. ASME Class 125/150 flanges. Is 150 PSI bi-directional dead end service rating without a downstream flange. Do NOT install between AWWA C115/A21.5 type flanges.

THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67 STANDARD • CERTIFIED LEAD-FREE* BY TRUESDAIL LABS TO NSF/ANSI 372

MATERIAL LIST

	PART	SPECIFICATION
1.	Screw	Steel, ANSI 1035 (2) 16" & 18" (4) 20" & 24"
2.	Bottom Plate	Ductile Iron ASTM A536 grade 65-45-12
3.	O-ring	Nitrile ASTM D2000
4.	Body	Ductile Iron ASTM a536 grade 65-45-12
5.	Long Bushing	Bronze ASTM B584 UNS C83600
6.	Stem	Stainless Steel ASTM A276 UNS S31600
7.	Disc	Stainless Steel ASTM A351 CF8M
8.	Taper Pin (2)	Stainless Steel ASTM A564 UNS S17400
9.	Seat	Nitrile ASTM D2000
		EPDM ASTM D2000
10.	Nameplate	Aluminum
11.	Short Bushing (2)	Bronze ASTM B584 UNS C83600
12.	O-ring	Nitrile ASTM D2000
13.	Кеу	Steel, ASTM A108 UNS C10450
14.	Screw	Steel, ANSI 1035 (6) 14" thru 18" (8) 20" & 24"

**NOTE: 24" is not available with SS trim

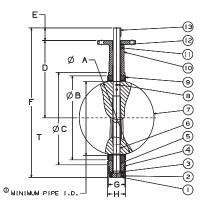
DIMENSIONS — WEIGHTS

S	ize	<u>A</u>	Minimum.	В	C				G	Н	<u> </u>
In.	mm	Dia.	Pipe I.D.	Dia.	Dia.	D	E	F	Body	Seat	Dia.
14″	350	13.12	13.02	14.77	17.20	14.49	1.77	26.77	3.00	3.13	1.244
16″	400	15.34	15.20	17.30	19.21	15.75	2.02	29.93	3.37	3.54	1.305
18″	450	17.34	17.09	19.31	21.22	16.61	2.02	31.54	4.12	4.29	1.494
20″	500	19.36	18.90	21.08	23.31	18.90	2.53	35.64	5.13	5.31	1.619
24″	600	23.33	23.05	25.71	32.09	22.13	2.76	42.96	5.96	6.14	1.993

DIMENSIONS — WEIGHTS

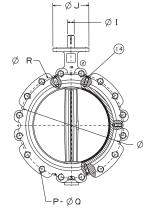
S	ize	_J_	K	L	<u>M P Q R T V</u>		WEIGHT				
In.	mm	Dia.	Dia.	Dia.	Drive Key		Dia.	Dia.	In.	Lbs.	Kg
14″	350	5.51	4.25	0.55	.250 x 1.125 WOODRUFF #809	12	1"-8 UNC	18.75	17.52	141	64
16″	400	7.76	6.25	0.83	.312 X.312 X 1.811 LONG	16	1"-8 UNC	21.25	20.08	199	90
18″	450	7.76	6.25	0.83	.375 X .375 X 1.881 LONG	16	1-1/8"-7 UNC	22.75	21.26	261	119
20″	500	7.76	6.25	0.83	.375 x .375 x 1.811 LONG	20	1-1/8"-7 UNC	25.00	24.02	395	179
24″	600	10.87	8.50	0.94	.500 x .500 x 2.362 LONG	20	1-1/4"-7 UNC	29.50	27.87	591	268

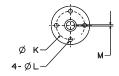
MARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.


Visit our website for the most current information.

LD-2010/LD-2110*

Lug Style EPDM or Buna-N Liner Stainless Steel Disc





14" Reference Lower Shaft Well

*Weighted average lead content ≤ 0.25%

Cast Iron Butterfly Valves

WC/LC-2000 Series

- Cast Iron Lug or wafer body
 - EPDM liner materials
 - 2" thru 12" size range
 - 200 PSI CWP
 - Bubble tight shut off at full rated pressure
 - Aluminum bronze disc
 - 416 stainless steel stem

N-200 Series

Cast Iron

Lug or wafer body

- EPDM or Buna-N liner materials
- 2" thru 12" size range
- 200 PSI CWP
- Bubble tight shut off at full rated pressure
- Aluminum bronze, nickel plated ductile iron disc, or nylon coated ductile iron disc
- 416 stainless steel stem

Note - Stem extensions for this butterfly series are not available.

Cast Iron Body • Extended Neck • Geometric Drive • Molded-In Seat Liner • Lug and Wafer Style

Sizes 2" through 12"

Install between Std. ASME Class 125 flanges[†]. Lug Style 200 PSI bi-directional dead end service rating without a downstream flange required.

THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67 STANDARD • US COAST GUARD "CATEGORY A" • CERTIFIED LEAD-FREE* BY TRUESDAIL LABS TO NSF/ANSI 61-8 COMMERCIAL HOT 180°F AND NSF/ANSI 61 AND 372

	MA	TERIAL LIST
	PART	SPECIFICATION
1.	Stem	Stainless Steel ASTM A582 Type 416
2.	Collar Bushing	Brass ASTM B16
3.	Stem Seal	EPDM Rubber
4.	Body Seal	EPDM Rubber
5.	Nameplate	Aluminum
6.	Upper Bushing	Copper CDA 122
7.	Liner	EPDM Rubber
8.	Disc	Alum. Brz. ASTM B148 Alloy 955
9.	Lower Bushing	Copper CDA 122
10.	Body Wafer	Cast Iron
11.	Body Lug	Cast Iron

				DIN	IENS	IONS	— V	VEIG	GHTS			
S	ize							G	Metal	Rubber	J	N
In.	mm.	Α	В	C	D	Е	F	Flat	Н	I	Square	Dia.
2	50	2.53	4.00	1.25	5.38	2.88	.38	.312	1.688	1.812	3.25	.500
2 1/	2 65	2.90	4.69	1.25	5.88	3.27	.38	.370	1.812	1.938	3.25	.562
3	80	3.15	5.12	1.25	6.12	3.40	.38	.370	1.812	1.938	3.25	.562
4	100	4.09	6.12	1.25	6.88	4.00	.38	.403	2.062	2.188	3.25	.625
5	125	5.13	7.25	1.25	7.38	4.75	.38	.496	2.188	2.312	3.25	.750
6	150	6.13	8.25	1.25	8.00	5.29	.38	.496	2.188	2.312	3.25	.750
8	200	8.13	10.41	1.25	9.25	6.50	.50	.560	2.375	2.500	3.25	.875
10	250	10.13	12.52	1.25	10.50	8.00	.50	.686	2.688	2.812	4.75	1.125

				_		Capsc	rew/	Stud Data		Lug		afer	
Si	ze	0	Р	R	К	L	Wa	afer Lug	М		ight		ight
In.	mm.	B.C.	Dia.	Dia.	No.	Dia.		ngth Length	B.C.	Lbs.	Kg.	Lbs.	Kg.
_ 2	50	3.25	.437	.437	4 5	5/8-11unc	;		4 3/4	7	3.2	5.5	2.5
2 1/2	65	3.25	.437	.500	4 5	5/8-11unc	;		5 1/2	9	4.1	7.5	3.4
3	80	3.25	.437	.500	4 5	5/8-11unc	:	Refer to	6	9.5	4.3	8	3.6
4	100	3.25	.437	.562	85	5/8-11unc	;	butterfly valve	7 1/2	15	6.8	11	5.0
5	125	3.25	.437	.656	8 3	3/4-10unc	;	technical	8 1/2	21	9.5	15	6.8
6	150	3.25	.437	.656	8 3	3/4-10unc	;	information for bolt	9 1/2	24	10.9	18	8.2
8	200	3.25	.437	.781	8 3	3/4-10unc	;	lengths	11 3/4	34	15.4	28	12.7
10	250	5.00	.562	1.000	12	7/8-9unc			14 1/4	62	28.1	45.5	20.7
12	300	5.00	.562	1.062	12	7/8-9unc			17	90	40.9	70	31.8

.50

.748

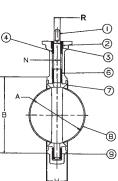
3.000

3.125

4.75

1.250

[†]NOTE: lug style valves - extra care should be used when installing with raised face flanges. Overtightening can result in broken lugs.


Visit our website for the most current information.

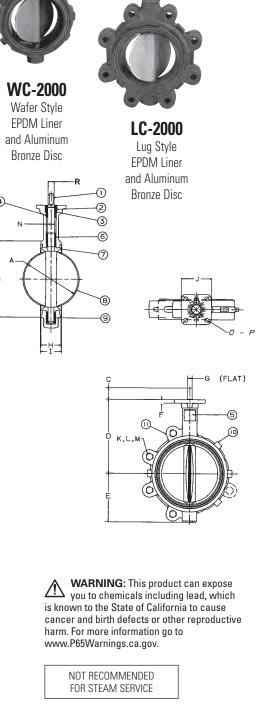
1.25

12.00

9.25

NOT RECOMMENDED FOR STEAM SERVICE NIBCO INC. WORLD HEADQUARTERS • 1516 MIDDLEBURY ST. • ELKHART, IN 46516-4740 • USA • PH: 1.800.234.0227 TECH SERVICES PH: 1.888.446.4226 • FAX: 1.888.336.4226 • INTERNATIONAL OFFICE PH: +1.574.295.3327 • FAX: +1.574.295.3455 www.nibco.com

*Weighted average lead content ≤ 0.25%



Revised 7/25/2018

NSF/ANSI 61

NSF/ANSI 372

us

12 300 12.13 15.00

Cast Iron Body • Extended Neck • Cartridge Seat Liner* • Lug Style

Sizes 2" through 12"

Install between Std. ASME Class 125/150 flanges[†]. Bi-directional dead end service rating without a downstream flange required: 2"-6" 200 PSI, 8" 150 PSI, 10"-12" 100 PSI.

THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67 STANDARD

	MA	TERIAL LIST
	PART	SPECIFICATION
1.	Body	Cast Iron, Epoxy coated ASTM A126 CL.B
2.	Body Bushing	Bronze ASTM B584 Grade C83600
3.	Liner	EPDM Rubber w/Phenolic Backing
		Buna-N Rubber Nitrile w/Phenolic Backing
4.	Stem	Stainless Steel ASTM A582 Type 416
5.	Disc	Alum. Brz. ASTM B148 Alloy C95400
		Ductile Iron ASTM A536 Grade 65-45-12 (plated)
6.	Taper Pin	Stainless Steel ASTM A582 Type 416
	(2 pin 6" - 12")	
7.	Name Plate	Aluminum
8.	Shaft Bushing	Bronze ASTM B584 Grade C83600
9.	Stem Seal	Buna-N Rubber Nitrile
10.	Retainer Plate	ASTM A570 GR33 Galvanized
11.	Bolts M6	ASTM A570 GR33 Galvanized

DIMENSIONS — WEIGHTS

				10101	10			0		
	Dia	<u>A</u> Bing I D	Min.	B	<u>C</u>	E	E	<u>G</u> Body	<u>H</u> Seet	<u> </u>
	Did.	Fipe I.D.	Did.	Did.	U	E	Г	DOUY	Seal	Dia.
50	2.08	1.38	3.00	3.94	6.34	1.26	10.75	1.655	1.81	0.496
/2 65	2.54	1.95	3.50	4.72	6.89	1.26	11.65	1.759	1.93	0.496
80	3.10	2.66	4.09	5.00	7.13	1.26	12.12	1.780	1.93	0.496
100	4.10	3.67	5.32	6.14	7.87	1.26	13.62	2.050	2.18	0.621
125	4.85	4.48	6.26	7.48	8.39	1.26	14.65	2.140	2.31	0.745
150	6.12	5.84	7.42	8.35	8.90	1.26	15.62	2.195	2.33	0.745
200	7.97	7.85	9.38	10.55	10.24	1.77	18.88	2.385	2.52	0.870
250	9.86	9.76	11.51	12.79	11.50	1.77	21.26	2.584	2.83	1.120
2 300	11.87	11.72	13.55	15.87	13.27	1.77	24.57	3.029	3.19	1.244
Size	J	. <u>К</u> В.С.	L	M	R		0	1	T	Lug Weigl
	/2 65 80 100 125 150 200	mm. Dia. 50 2.08 /2 65 2.54 80 3.10 100 4.10 125 4.85 150 6.12 200 7.97 250 9.86 2 300 11.87	Size A 50 2.08 1.38 /2 65 2.54 1.95 80 3.10 2.66 100 4.10 3.67 125 4.85 4.48 150 6.12 5.84 200 7.97 7.85 2300 11.87 11.72	Size A Min. 50 2.08 1.38 3.00 /2 65 2.54 1.95 3.50 80 3.10 2.66 4.09 100 4.10 3.67 5.32 125 4.85 4.48 6.26 150 6.12 5.84 7.42 200 7.97 7.85 9.38 2 250 9.86 9.76 11.51 2 300 11.87 11.72 13.55	Size A Min. B 50 2.08 1.38 3.00 3.94 /2 65 2.54 1.95 3.50 4.72 80 3.10 2.66 4.09 5.00 100 4.10 3.67 5.32 6.14 125 4.85 4.48 6.26 7.48 150 6.12 5.84 7.42 8.35 200 7.97 7.85 9.38 10.55 250 9.86 9.76 11.51 12.79 2 300 11.87 11.72 13.55 15.87	Imm. Dia. Pipe I.D. Dia. Dia. D 50 2.08 1.38 3.00 3.94 6.34 /2 65 2.54 1.95 3.50 4.72 6.89 80 3.10 2.66 4.09 5.00 7.13 100 4.10 3.67 5.32 6.14 7.87 125 4.85 4.48 6.26 7.48 8.39 150 6.12 5.84 7.42 8.35 8.90 200 7.97 7.85 9.38 10.55 10.24 250 9.86 9.76 11.51 12.79 11.50 2 300 11.87 11.72 13.55 15.87 13.27	Size A Min. B C Dia. D E 50 2.08 1.38 3.00 3.94 6.34 1.26 50 2.08 1.38 3.00 3.94 6.34 1.26 /2 65 2.54 1.95 3.50 4.72 6.89 1.26 80 3.10 2.66 4.09 5.00 7.13 1.26 100 4.10 3.67 5.32 6.14 7.87 1.26 125 4.85 4.48 6.26 7.48 8.39 1.26 150 6.12 5.84 7.42 8.35 8.90 1.26 150 6.12 5.84 7.42 8.35 10.24 1.77 2200 7.97 7.85 9.38 10.55 10.24 1.77 2300 11.87 11.72 13.55 15.87 13.27 1.77	Size A Min. B C D 50 2.08 1.38 3.00 3.94 6.34 1.26 10.75 265 2.54 1.95 3.50 4.72 6.89 1.26 11.65 80 3.10 2.66 4.09 5.00 7.13 1.26 12.12 100 4.10 3.67 5.32 6.14 7.87 1.26 13.62 125 4.85 4.48 6.26 7.48 8.39 1.26 14.65 150 6.12 5.84 7.42 8.35 8.90 1.26 15.62 200 7.97 7.85 9.38 10.55 10.24 1.77 18.88 2250 9.86 9.76 11.51 12.79 11.50 1.77 24.57 2300 11.87 11.72 13.55 15.87 13.27 1.77 24.57	Size A Min. B C E F Body 50 2.08 1.38 3.00 3.94 6.34 1.26 10.75 1.655 /2 65 2.54 1.95 3.50 4.72 6.89 1.26 11.65 1.759 80 3.10 2.66 4.09 5.00 7.13 1.26 12.12 1.780 100 4.10 3.67 5.32 6.14 7.87 1.26 13.62 2.050 125 4.85 4.48 6.26 7.48 8.39 1.26 14.65 2.140 150 6.12 5.84 7.42 8.35 8.90 1.26 15.62 2.195 200 7.97 7.85 9.38 10.55 10.24 1.77 18.88 2.385 2300 11.87 11.72 13.55 15.87 13.27 1.77 24.57 3.029	Size A Min. B C B C F G H Seat 50 2.08 1.38 3.00 3.94 6.34 1.26 10.75 1.655 1.81 /2 65 2.54 1.95 3.50 4.72 6.89 1.26 11.65 1.759 1.93 80 3.10 2.66 4.09 5.00 7.13 1.26 12.12 1.780 1.93 100 4.10 3.67 5.32 6.14 7.87 1.26 13.62 2.050 2.18 125 4.85 4.48 6.26 7.48 8.39 1.26 14.65 2.140 2.31 150 6.12 5.84 7.42 8.35 8.90 1.26 15.62 2.195 2.33 200 7.97 7.85 9.38 10.55 10.24 1.77 18.88 2.385 2.52 250 9.86 9.76 11.51 12.79

S	ze	J	B.C.	_L		K		<u>u</u>	<u> </u>	Weight	_
In.	mm.	Dia.	Dia.	Dia.	Dia.	Dia	Р	Dia.	Flats	Lbs. Kg.	
2	50	3.00	1.97	0.28	0.75	4.75	4	5/8-11UNC	.350	8.6 3.9	1
2 1/2	65	3.03	1.97	0.28	0.75	5.50	4	5/8-11UNC	.350	10.8 4.9	J
3	80	3.03	1.97	0.28	0.75	6.00	4	5/8-11UNC	.350	11.4 5.2	
4	100	3.62	2.76	0.39	0.75	7.50	8	5/8-11UNC	.437	18.9 8.6	i –
5	125	3.62	2.76	0.39	0.88	8.50	8	3/4-10UNC	.500	22.8 10.4	4
6	150	3.62	2.76	0.39	0.88	9.50	8	3/4-10UNC	.500	27.1 12.3	3
8	200	4.50	4.02	0.47	0.88	11.75	8	3/4-10UNC	.625	41.2 18.7	7
10	250	4.50	4.02	0.47	1.00	14.25	12	7/8-9UNC	.812	56.3 25.9	9
12	300	5.50	4.02	0.47	1.00	17.00	12	7/8-9UNC	.875	90.3 41.0	0

* Note: refer to NIBCO 0 & M manual for specified installation instructions for optimal performance of cartridge seat valves

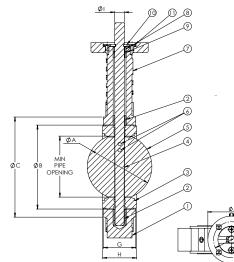
* Note: lug style valves- extra care should be used when installing with raised face flanges. Over-tightening can result in broken lugs.

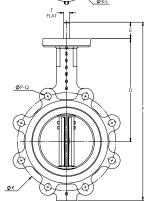
N-200235

Lug Style EPDM Liner Aluminum Bronze Disc

N-200236

Lug Style EPDM Liner Ductile Iron Disc


N-200245


Lug Style Buna Liner Aluminum Bronze Disc

N-200246

Lug Style Buna Liner Ductile Iron Disc

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

> NOT RECOMMENDED FOR STEAM SERVICE

Visit our website for the most current information.

Cast Iron Body • Extended Neck • Cartridge Seat Liner* • Wafer Style

Sizes 2" through 12"

Install between Std. ASME Class 125 flanges.

THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67 STANDARD

MATERIAL LIST

	PART	SPECIFICATION
1.	Body	Cast Iron, Epoxy coated ASTM A126 CL.B
2.	Body Bushing	Bronze ASTM B584 Grade C83600
3.	Liner	EPDM Rubber w/Phenolic Backing
		Buna-N Rubber Nitrile w/Phenolic Backing
4.	Stem	Stainless Steel ASTM A582 Type 416
5.	Disc	Alum. Brz. ASTM B148 Alloy C95400
		Ductile Iron ASTM A536 Grade 65-45-12 (plated)
6.	Taper Pin	Stainless Steel ASTM A582 Type 416
	(2 pin 6" - 12")	
7.	Name Plate	Aluminum
8.	Shaft Bushing	Bronze ASTM B584 Grade C83600
9.	Stem Seal	Buna-N Rubber Nitrile
10.	Retainer Plate	ASTM A570 GR33 Galvanized
11.	Bolts M6	ASTM A570 GR33 Galvanized

DIMENSIONS — WEIGHTS

	ize mm.	Dia	A Pipe I.D	Min.	B Dia.	<u>C</u> D	E	F	<u>G</u> Body	H Seat	l Dia.
<u> </u>		Dia.	Fipe I.D	. Dia.	Dia.	<u> </u>		F	Douy	Jeal	Dia.
2	50	2.08	1.38	3.00	3.94	6.34	1.26	10.75	1.655	1.81	0.496
2 1/2	2 65	2.54	1.95	3.50	4.72	6.89	1.26	11.65	1.759	1.93	0.496
3	80	3.10	2.66	4.09	5.00	7.13	1.26	12.12	1.780	1.93	0.496
4	100	4.10	3.67	5.32	6.14	7.87	1.26	13.62	2.050	2.18	0.621
5	125	4.85	4.48	6.26	7.48	8.39	1.26	14.65	2.140	2.31	0.745
6	150	6.12	5.84	7.42	8.35	8.90	1.26	15.62	2.195	2.33	0.745
8	200	7.97	7.85	9.38	10.55	10.24	1.77	18.90	2.385	2.52	0.870
10	250	9.86	9.76	11.51	12.79	11.50	1.77	21.26	2.584	2.83	1.120
12	300	11.87	11.72	13.55	15.87	13.27	1.77	24.57	3.029	3.19	1.244

Si	ze	J	B.C.	L	м	R		0 T		Lug Weig	
In.	mm.	Dia.	Dia.	Dia.	Dia.	Dia	Р	Dia.	Flats	Lbs.	Kg.
2	50	3.00	2.25	0.28	0.75	4.75	4	5/8-11UNC	.350	5.7	2.6
2 1/2	65	3.03	2.25	0.28	0.75	5.50	4	5/8-11UNC	.350	7.5	3.9
3	80	3.03	2.25	0.28	0.75	6.00	4	5/8-11UNC	.350	8.4	3.8
4	100	3.62	2.75	0.39	0.75	7.50	8	5/8-11UNC	.437	12.3	5.6
5	125	3.62	2.75	0.39	0.88	8.50	8	3/4-10UNC	.500	17.2	7.8
6	150	3.62	2.75	0.39	0.88	9.50	8	3/4-10UNC	.500	19.6	8.9
8	200	4.50	3.50	0.47	0.88	11.75	8	3/4-10UNC	.625	29.7	13.5
10	250	4.50	3.50	0.47	1.00	14.25	12	7/8-9UNC	.812	44.0	20.0
12	300	5.50	4.25	0.47	1.00	17.00	12	7/8-9UNC	.875	65.8	29.9

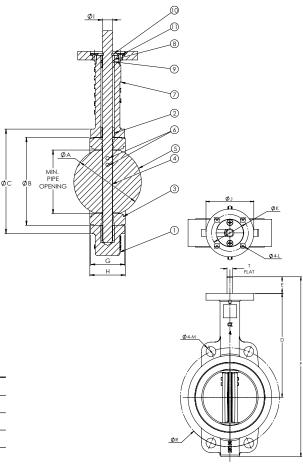
*Note: refer to NIBCO 0 & M manual for specified installation instructions for optimal performance of cartridge seat valves

Visit our website for the most current information.

N-200135

Wafer Style EPDM Liner Aluminum Bronze Disc

N-200136


Wafer Style EPDM Liner

Ductile Iron Disc

N-200145

Wafer Style Buna Liner Aluminum Bronze Disc **N-200146** Wafer Style Buna Liner Ductile Iron Disc

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

Cast Iron Body • Extended Neck • Cartridge Seat Liner* • Lug Style

Sizes 2" through 12"

Install between Std. ASME Class 125 flanges[†]. Bi-directional dead end service rating without a downstream flange required: 2"-6" 200 PSI, 8" 150 PSI, 10"-12" 100 PSI.

THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67 STANDARD

	MATERIAL LIST
PART	SPECIFICATION
1. Body	Cast Iron, Epoxy coated ASTM A126 CL.B
2. Body Bushing	Bronze ASTM B584 Grade C83600
3. Liner	EPDM Rubber w/Phenolic Backing Buna-N Rubber Nitrile w/Phenolic Backing
4. Stem	Stainless Steel ASTM A582 Type 416
5. Disc	Ductile Iron ASTM A536 Grade 65-45-12 (nylon bonded)
6. Taper Pin (2 pin 6" - 12")	Stainless Steel ASTM A582 Type 416
7. Name Plate	Aluminum
8. Shaft Bushing	Bronze ASTM B584 Grade C83600
9. Stem Seal	Buna-N Rubber Nitrile

DIMENSIONS — WEIGHTS

Size In. m	_	<u>A</u> Pipe I.D.	Min. Dia.	B Dia.	C D	E	F	<u>G</u> Body	H Seat	l Dia.
25	io 2.08	1.38	3.00	3.94	6.34	1.26	10.75	1.655	1.81	0.496
2 1/2 6	5 2.54	1.95	3.50	4.72	6.89	1.26	11.65	1.759	1.93	0.496
38	3.10	2.66	4.09	5.00	7.13	1.26	12.12	1.780	1.93	0.496
4 10	00 4.10	3.67	5.32	6.14	7.87	1.26	13.62	2.050	2.18	0.621
5 12	25 4.85	4.48	6.26	7.48	8.39	1.26	14.65	2.140	2.31	0.745
6 1	50 6.12	5.84	7.42	8.35	8.90	1.26	15.62	2.195	2.33	0.745
8 20	00 7.97	7.85	9.38	10.55	10.24	1.77	18.88	2.385	2.52	0.870
10 25	50 9.86	9.76	11.51	12.79	11.50	1.77	21.26	2.584	2.83	1.120
12 30	00 11.87	11.72	13.55	15.87	13.27	1.77	24.57	3.029	3.19	1.244

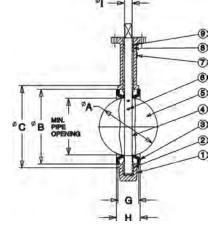
Si	ze	J	<u>К</u> В.С.	L	м	R		0	т	Lug Weight
In.	mm.	Dia.	Dia.	Dia.	Dia.	Dia	Р	Dia.	Flats	Lbs. Kg.
2	50	3.00	1.97	0.28	0.75	4.75	4	5/8-11UNC	.350	8.6 3.9
2 1/2	65	3.03	1.97	0.28	0.75	5.50	4	5/8-11UNC	.350	10.8 4.9
3	80	3.03	1.97	0.28	0.75	6.00	4	5/8-11UNC	.350	11.4 5.2
4	100	3.62	2.76	0.39	0.75	7.50	8	5/8-11UNC	.437	18.9 8.6
5	125	3.62	2.76	0.39	0.88	8.50	8	3/4-10UNC	.500	22.8 10.4
6	150	3.62	2.76	0.39	0.88	9.50	8	3/4-10UNC	.500	27.1 12.3
8	200	4.50	4.02	0.47	0.88	11.75	8	3/4-10UNC	.625	41.2 18.7
10	250	4.50	4.02	0.47	1.00	14.25	12	7/8-9UNC	.812	56.3 25.9
12	300	5.50	4.02	0.47	1.00	17.00	12	7/8-9UNC	.875	90.3 41.0

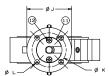
*Note: refer to NIBCO 0 & M manual for specified installation instructions for optimal performance of cartridge seat valves

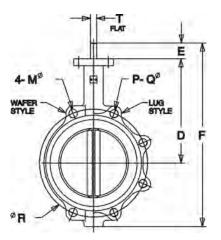
[†]Note: lug style valves- extra care should be used when installing with raised face flanges. Over-tightening can result in broken lugs.

N-200238

Lug Style EPDM Liner Nylon Bonded DI Disc


N-200138 Wafer Style EPDM Liner Nylon Bonded DI Disc


N-200248


Lug Style Buna-N Liner Nylon Bonded DI Disc

N-200148 Wafer Style Buna-N Liner Nylon Bonded DI Disc

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

Visit our website for the most current information.

Cast Iron Body • Extended Neck • Cartridge Seat Liner* • Lug Style

Sizes 14" through 24"

Install between Std. ASME Class 125 flanges[†]. Bi-directional dead end service rating without a downstream flange required: 2"-6" 200 PSI, 8" 150 PSI, 10"-12" 100 PSI.

THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67 STANDARD

	MATERIAL LIST
PART	SPECIFICATION
1. Body	Cast Iron, Epoxy coated ASTM A126 CL.B
2. Body Bushing	Bronze ASTM B584 Grade C83600
3. Liner	EPDM Rubber w/Phenolic Backing
	Buna-N Rubber Nitrile w/Phenolic Backing
4. Stem	Stainless Steel ASTM A582 Type 416
5. Disc	Ductile Iron ASTM A536 Grade 65-45-12
	(nylon bonded DI)
6. Taper Pin	Stainless Steel ASTM A582 Type 416
(2 pin 6" - 12")	
7. Name Plate	Aluminum
8. Shaft Bushing	Bronze ASTM B584 Grade C83600
9. Stem Seal	Buna-N Rubber Nitrile

DIMENSIONS — WEIGHTS

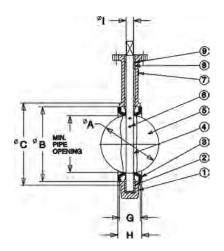
S	ize	Α	Minimum.	В	C				G	Н	<u> </u>
In.	mm	Dia.	Pipe I.D.	Dia.	Dia.	D	E	F	Body	Seat	Dia.
14″	350	13.12	13.02	14.77	17.20	14.49	1.77	26.77	3.00	3.13	1.244
16″	400	15.34	15.20	17.30	19.21	15.75	2.02	29.93	3.37	3.54	1.305
18″	450	17.34	17.09	19.31	21.22	16.61	2.02	31.54	4.12	4.29	1.494
20″	500	19.36	18.90	21.08	23.31	18.90	2.53	35.64	5.13	5.31	1.619
24″	600	23.33	23.05	25.71	32.09	22.13	2.76	42.96	5.96	6.14	1.993

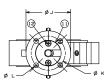
DIMENSIONS — WEIGHTS

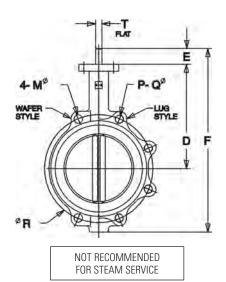
Si	ize	J	К	L	M	Р	0	R	Т	WEI	GHT
In.	mm	Dia.	Dia.	Dia.	Drive Key		Dia.	Dia.	In.	Lbs.	Kg
14″	350	5.51	4.25	0.55	.250 x 1.125 WOODRUFF #809	12	1"-8 UNC	18.75	17.52	141	64
16″	400	7.76	6.25	0.83	.312 X.312 X 1.811 LONG	16	1"-8 UNC	21.25	20.08	199	90
18″	450	7.76	6.25	0.83	.375 X .375 X 1.881 LONG	16	1-1/8"-7 UNC	22.75	21.26	261	119
20"	500	7.76	6.25	0.83	.375 x .375 x 1.811 LONG	20	1-1/8"-7 UNC	25.00	24.02	395	179
24″	600	10.87	8.50	0.94	.500 x .500 x 2.362 LONG	20	1-1/4"-7 UNC	29.50	27.87	591	268

*Note: refer to NIBCO 0 & M manual for specified installation instructions for optimal performance of cartridge seat valves

*Note: lug style valves- extra care should be used when installing with raised face flanges. Over-tightening can result in broken lugs.


WARNING: This product can expose you to chemicals including lead, which is known to the State Δ of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.




Lug Style EPDM Liner Nylon Bonded DI Disc

Grooved Butterfly Valve

GD-4765 Series

Polyamide Coated Ductile Iron body

Elastomer encapsulated disc (EPDM or Buna-N)

- Maximum temperature rating 200°F EPDM Disc and 180°F with Buna Disc
- 416 stainless steel stem
- 300 PSI WOG 2" thru 10"
- 200 PSI WOG 12"
- 175 PSI WOG 10" UL/FM
- UL & ULC listed, FM approved
- 21/2" thru 10" UL listed for indoor and outdoor service
- UL/FM version accepts internal supervisory switches
- Designed to meet MSS SP-67 standard
- End connection per AWWA C606

300 PSI Grooved End Butterfly Valves

Polyamide Coated Ductile Iron Body • Extended Neck • Elastomer Encapsulated Disc • Grooved Mechanical Style • 12" Maximum Pressure Rating 200 PSI • Maximum Temperature Rating of 200°F EPDM Disc and 180°F Buna Disc • Grooved End Compatible with IPS pipe

Sizes 2" through 12"

GD-4765 w/EPDM Liner

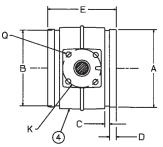
GD-4775

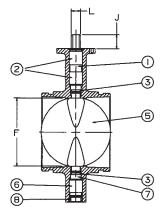
w/Buna-N Liner

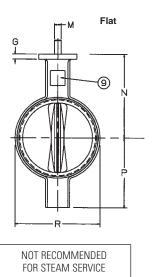
DESIGNED TO MEET MSS SP-67 STANDARD

		MATERIAL LIST
PAR	Г	SPECIFICATION
1. Uppe	r Stem	Stainless Steel ASTM A582 Type 416
2. Uppe	r Bearing	Split Metal
3. O-Rin	g	EPDM or Buna-N
4. Body		Ductile Iron ASTM A395 w/Polyamide Coating
5. Disc		Ductile Iron ASTM A395 w/EPDM or
		Buna-N Encapsulation
6. Lowe	r Bearing	Split Metal
7. Lowe	r Stem	Stainless Steel ASTM A582 Type 416
8. Dust	Plug	PVC
9. Name	e Plate	Aluminum

Polyamide coating has NSF certification


DIMENSIONS — WEIGHTS


Si	ze								
In.	mm.	Α	В	C	D	E	F	G	J
2 1/2	65	2.88	2.72	.31	.63	3.85	2.42	.46	1.22
3	80	3.50	3.34	.31	.63	3.85	2.86	.46	1.18
3 O.D.	76.1	3.00	2.84	.31	.63	3.85	2.42	.46	1.22
4	100	4.50	4.33	.38	.63	4.56	3.84	.46	1.24
5	125	5.56	5.39	.38	.63	5.86	4.79	.46	1.24
6	150	6.63	6.45	.38	.63	5.86	5.73	.46	1.29
6 1/2 0.	D.165.1	6.51	6.32	.38	.63	5.86	5.73	.46	1.29
8	200	8.63	8.44	.44	.75	5.26	7.71	.46	1.32
10	250	10.75	10.56	.50	.75	6.29	9.56	.70	1.38


Size)								We	<u>eight</u>
In.	mm.	K	L	М	Ν	Р	0	R	Lbs.	Kg.
2 1/2	65	3.25	.50	.37	4.19	3.25	.437	3.46	7.5	3.4
3	80	3.25	.50	.37	4.44	3.54	.437	3.97	8.7	3.9
3 O.D.	76.1	3.25	.50	.37	4.19	3.25	.437	3.46	8.7	3.9
4	100	3.25	.66	.50	5.33	4.35	.437	5.03	12.2	5.5
5	125	3.25	.66	.50	5.83	4.84	.437	6.27	17.3	7.8
6	150	3.25	.78	.56	7.11	5.93	.437	7.25	27.4	12.4
6 1/2 O.D.	165.1	3.25	.78	.56	7.11	5.93	.437	7.25	27.4	12.4
8	200	3.25	.78	.56	8.05	6.87	.437	9.25	32.5	14.7
10	250	5.00	1.06	.75	9.86	9.17	.562	11.25	69.6	31.6

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

Visit our website for the most current information.

300 PSI Grooved End Butterfly Valves

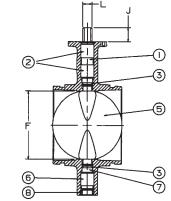
Polyamide Coated Ductile Iron Body • Extended Neck • Elastomer Encapsulated Disc • Grooved Mechanical Style • 12" Maximum Pressure Rating 200 PSI • Maximum Temperature Rating of 200°F • Grooved End Compatible with IPS Pipe

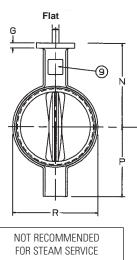
Sizes 2" through 12"

DESIGNED TO MEET MSS SP-67 STANDARD • NSF/ANSI 61-8 COMMERCIAL HOT 180°F (INCLUDES ANNEX F AND G) AND NSF/ANSI-372

MATERIAL LIST									
PART	SPECIFICATION								
1. Upper Stem	Stainless Steel ASTM A582 Type 416								
2. Upper Bearing	Split Metal								
3. O-Ring	EPDM								
4. Body	Ductile Iron ASTM A395 w/Polyamide Coating								
5. Disc	Ductile Iron ASTM A395 w/EPDM								
6. Lower Bearing	Split Metal								
7. Lower Stem	Stainless Steel ASTM A582 Type 416								
8. Dust Plug	PVC								
9. Name Plate	Aluminum								

GD-4765-N w/EPDM Liner


DIMENSIONS — WEIGHTS


Si	ze								
In.	mm.	Α	В	C	D	E	F	G	J
2	50	2.38	2.32	.33	.63	3.33	2.42	.46	1.31
21/2	65	2.88	2.72	.31	.63	3.85	2.42	.46	1.22
3	80	3.50	3.34	.31	.63	3.85	2.86	.46	1.18
3 O.D.	76.1	3.00	2.84	.31	.63	3.85	2.42	.46	1.22
4	100	4.50	4.33	.38	.63	4.56	3.84	.46	1.24
5	125	5.56	5.39	.38	.63	5.86	4.79	.46	1.24
6	150	6.63	6.45	.38	.63	5.86	5.73	.46	1.29
61/2 0.	D.165.1	6.51	6.32	.38	.63	5.86	5.73	.46	1.29
8	200	8.63	8.44	.44	.75	5.26	7.71	.46	1.32
10	250	10.75	10.56	.50	.75	6.29	9.56	.70	1.38
12	300	12.76	12.51	.50	.75	6.52	11.55	.70	1.38

Size	e								W	eight
In.	mm.	K	L	Μ	Ν	Р	0	R	Lbs.	Kg.
2	50	3.25	.50	.37	4.00	3.14	.437	2.89	6.7	3.0
21/2	65	3.25	.50	.37	4.19	3.25	.437	3.46	7.5	3.4
3	80	3.25	.50	.37	4.44	3.54	.437	3.97	8.7	3.9
3 O.D.	76.1	3.25	.50	.37	4.19	3.25	.437	3.46	8.7	3.9
4	100	3.25	.66	.50	5.33	4.35	.437	5.03	12.2	5.5
5	125	3.25	.66	.50	5.83	4.84	.437	6.27	17.3	7.8
6	150	3.25	.78	.56	7.11	5.93	.437	7.25	27.4	12.4
6½ O.D.	165.1	3.25	.78	.56	7.11	5.93	.437	7.25	27.4	12.4
8	200	3.25	.78	.56	8.05	6.87	.437	9.25	32.5	14.7
10	250	5.00	1.06	.75	9.86	9.17	.562	11.25	69.6	31.6
12	300	5.00	1.06	.75	10.85	10.17	.562	13.14	88.0	39.9

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

*Weighted average lead content ≤ 0.25%

Visit our website for the most current information.

www.nibco.com Revised 7/25/2018

300 PSI WWP UL/FM Butterfly Valves

Designed for normally open position monitoring

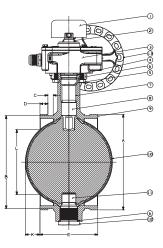
Fire Protection Valve • Grooved Mechanical Style • Nylon Coated Ductile Iron Body • Extended Neck • Elastomer Encapsulated Disc • Accepts Internal Supervisory Switches • Compatible with IPS Pipe[†]

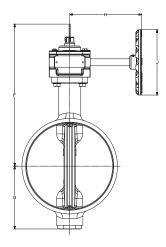
300 PSI/20.7 Bar Non-Shock Cold Water

UL/ULC LISTED** • UL/FM LISTED FOR INDOOR AND OUTDOOR SERVICE • THIRD PARTY CERTIFIED TO NSF/ANSI 61 AND 372 • END CONNECTION PER AWWA C606

MATERIAL LIST

	PART	SPECIFICATION									
1	Indicator Flag	Painted Steel									
2	Stem Adapter	Steel									
3	Gear Operator	Cast Iron and Steel									
4	Retaining Ring	Carbon Steel									
5	Cartridge Seal	Brass ASTM C36000									
6	Stem Seals	EPDM									
7	Upper Stem	Stainless Steel ASTM A582 Type 416									
8	Upper Bushing	Plated Steel with PTFE Lining									
9	Body	Ductile Iron ASTM A395 with Polyaminde Coating									
10	Disc	Ductile Iron ASTM A536 with EPDM Encapsulation									
11	Lower Bushing	Steel with PTFE Lining									
12	Lower Stem	Stainless Steel ASTM A582 Type 416									
13	Handwheel	Cast Iron									


Factory mounted with two internal supervisory switches. Uses NIBCO model T1446762 PP switch. Ground post (-GP) and wall post (-WP) available. Normally open monitored only.


GD-4865-8N Grooved 21/2", 3", 4", 6", 8", 10"

GD-4865-4N

(not shown)

No Switches

DIMENSIONS—WEIGHTS

		Dimensions											_												
SIZE A		В		C		D		E		F		G		Н		J		К		L		Weight			
In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	Lbs.	Kg.
2½″	65	2.88	73	2.72	69	0.31	8	0.63	16	3.81	97	8.95	227	2.20	56	4.92	125	4.25	108	_	_	_	_	9.5	4.3
3 OD	76.1	3.00	76.1	2.85	72	0.31	8	0.63	16	3.81	97	9.16	233	2.47	63	4.92	125	4.25	108	_	_	_	_	11.3	5.2
3	80	3.50	80.0	3.34	85	0.31	8	0.63	16	3.81	97	9.16	233	2.47	63	4.92	125	4.25	108	—	—	—	_	11.6	5.3
4	100	4.50	114.3	4.33	110	0.38	10	0.63	16	4.56	116	10.00	254	3.00	76	4.92	125	4.25	108	_	_	_	_	15.0	6.8
6 O D	165.1	6.50	165.1	6.33	161	0.38	10	0.63	16	5.81	148	11.92	303	4.33	110	6.48	165	6	152		—	—	—	31.5	14.3
6	150	6.63	168.3	6.45	164	0.38	10	0.63	16	5.81	148	11.92	303	4.33	110	6.48	165	6	152	—	—	—	—	31.3	14.2
8	200	8.63	219	8.44	214	0.44	11	0.75	19	5.25	133	12.85	326	5.67	114	6.48	165	6	152	1.32	34	5.87	149	43.0	19.5
10	250	10.77	250	10.55	268	0.50	13	0.75	19	6.25	159	15	381	6.77	172	8.74	222	6	152	1.74	44	7.44	189	77.0	35

** Compliance with the Standard for Butterfly Valves for Fire Protection Service, UL 1091, and Indicating Valves, FM Class Number 1112. **† See Grooved Pipe Specification section**

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

Visit our website for the most current information.

*Weighted average lead content ≤ 0.25%

NSE/ANSI 6 NSF/ANSI 372

300 PSI WWP UL/FM Butterfly Valves

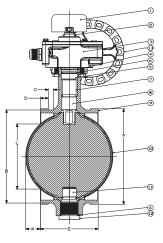
Designed for normally closed position monitoring

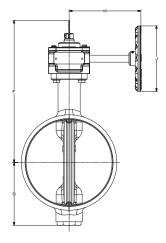
Fire Protection Valve • Grooved Mechanical Style • Nylon Coated Ductile Iron Body • Extended Neck • Elastomer Encapsulated Disc • Factory Installed Internal Monitoring Switches • Compatible with IPS Pipe[†]

300 PSI/20.7 Bar Non-Shock Cold Water 21/2" - 10"

Warning: These valves are not to be used between the water source and sprinkler head.

UL/ULC LISTED** • 21/2" -10" LISTED FOR INDOOR AND OUTDOOR SERVICE • THIRD PARTY CERTIFIED TO NSF/ANSI 61 AND 372 • END CONNECTION PER AWWA C606


	M	ATERIAL LIST
	PART	SPECIFICATION
1	Indicator Flag	Painted Steel
2	Stem Adapter	Steel
3	Gear Operator	Cast Iron and Steel
4	Retaining Ring	Carbon Steel
5	Cartridge Seal	Brass ASTM C36000
6	Stem Seals	EPDM
7	Upper Stem	Stainless Steel ASTM A582 Type 416
8	Upper Bushing	Plated Steel with PTFE Lining
9	Body	Ductile Iron ASTM A395 with Polyaminde Coating
10	Disc	Ductile Iron ASTM A536 with EPDM Encapsulation
11	Lower Bushing	Steel with PTFE Lining
12	Lower Stem	Stainless Steel ASTM A582 Type 416
13	Handwheel	Cast Iron


Note: Comes with two factory mounted internal supervisory switches. Uses NIBCO model T1447532 PP switch. See I & M manual for installation and wiring instructions. Ground post or wall post not available.

Normally closed monitored.

GD-4865-C-8N 21/2", 3", 4", 6", 8", 10"

DIMENSIONS—WEIGHTS

				Dimensions									_												
S	IZE		A	E	3	(0		D		E	F	:		G		Н		J		(L	We	ight
In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	Lbs.	Kg.
21⁄2″	65	2.88	73	2.72	69	0.31	8	0.63	16	3.81	97	8.95	227	2.20	56	4.92	125	4.25	108				_	9.5	4.3
3 OD	76.1	3.00	76.1	2.85	72	0.31	8	0.63	16	3.81	97	9.16	233	2.47	63	4.92	125	4.25	108	_	_	_	_	11.3	5.2
3	80	3.50	80.0	3.34	85	0.31	8	0.63	16	3.81	97	9.16	233	2.47	63	4.92	125	4.25	108	_	_	—	—	11.6	5.3
4	100	4.50	114.3	4.33	110	0.38	10	0.63	16	4.56	116	10.00	254	3.00	76	4.92	125	4.25	108	_	_	_	_	15.0	6.8
6 O D	165.1	6.50	165.1	6.33	161	0.38	10	0.63	16	5.81	148	11.92	303	4.33	110	6.48	165	6	152	—	—	—	—	31.5	14.3
6	150	6.63	168.3	6.45	164	0.38	10	0.63	16	5.81	148	11.92	303	4.33	110	6.48	165	6	152	—	—	—	—	31.3	14.2
8	200	8.63	219	8.44	214	0.44	11	0.75	19	5.25	133	12.85	326	5.67	114	6.48	165	6	152	1.32	34	5.87	149	43.0	19.5
10	250	10.77	250	10.55	268	0.50	13	0.75	19	6.25	159	15	381	6.77	172	8.74	222	6	152	1.74	44	7.44	189	77.0	35

** Compliance with the Standard for Butterfly Valves for Fire Protection Service, UL 1091 and Indicating Valves, FM Class Number 1112.

† See Grooved Pipe Specification section

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

*Weighted average lead content $\leq 0.25\%$

Visit our website for the most current information.

NIBCO INC. WORLD HEADQUARTERS • 1516 MIDDLEBURY ST. • ELKHART, IN 46516-4740 • USA • PH: 1.800.234.0227 TECH SERVICES PH: 1.888.446.4226 • FAX: 1.888.336.4226 • INTERNATIONAL OFFICE PH: +1.574.295.3327 • FAX: +1.574.295.3455

37

NSF/ANSI 61

NSF/ANSI 372

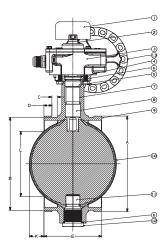
350 PSI WWP UL/FM Butterfly Valves

Designed for normally open position monitoring

Fire Protection Valve • Grooved Mechanical Style • Nylon Coated Ductile Iron Body • Extended Neck • Elastomer Encapsulated Disc • Internal Supervisory Switches • Compatible with IPS Pipe[†]

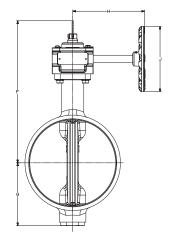
350 PSI/24 Bar Non-Shock Cold Water 21/2" - 10"

UL/ULC LISTED** • UL/FM LISTED FOR INDOOR AND OUTDOOR SERVICE • THIRD PARTY CERTIFIED TO NSF/ANSI 61 AND 372 • END CONNECTION PER AWWA C606


MATERIAL LIST										
	PART	SPECIFICATION								
1	Indicator Flag	Painted Steel								
2	Stem Adapter	Steel								
3	Gear Operator	Cast Iron and Steel								
4	Retaining Ring	Carbon Steel								
5	Cartridge Seal	Brass ASTM C36000								
6	Stem Seals	EPDM								
7	Upper Stem	Stainless Steel ASTM A582 Type 416								
8	Upper Bushing	Steel with PTFE Lining								
9	Body	Ductile Iron ASTM A395 with Polyaminde Coating								
10	Disc	Ductile Iron ASTM A536 with EPDM Encapsulation								
11	Lower Bushing	Steel with PTFE Lining								
12	Lower Stem	Stainless Steel ASTM A582 Type 416								
13	Handwheel	Cast Iron								

Factory mounted with two internal supervisory switches. Uses NIBCO model T1446762 PP switch.

Ground post (-GP) and wall post (-WP) available. Normally open monitored only.


GD-6865-8N Grooved 21/2", 3", 4", 6", 8", 10"

GD-6865-4N

(not shown)

No Switches

DIMENSIONS—WEIGHTS

				Dimensions									_												
S	ZE		Α	E	3	(C		D		E		F		G		H		J	I	K		L	Wei	ight
In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	Lbs.	Kg.
2½″	65	2.88	73	2.72	69	0.31	8	0.63	16	3.81	97	8.95	227	2.20	56	4.92	125	4.25	108	_	_	_	_	9.5	4.3
3 OD	76.1	3.00	76.1	2.85	72	0.31	8	0.63	16	3.81	97	9.16	233	2.47	63	4.92	125	4.25	108	_	_	_	_	11.3	5.2
3	80	3.50	80.0	3.34	85	0.31	8	0.63	16	3.81	97	9.16	233	2.47	63	4.92	125	4.25	108	_	_	_	_	11.6	5.3
4	100	4.50	114.3	4.33	110	0.38	10	0.63	16	4.56	116	10.00	254	3.00	76	4.92	125	4.25	108	_	_		_	15.0	6.8
6 OD	165.1	6.50	165.1	6.33	161	0.38	10	0.63	16	5.81	148	11.92	303	4.33	110	6.48	165	6	152		_	_	_	31.5	14.3
6	150	6.63	168.3	6.45	164	0.38	10	0.63	16	5.81	148	11.92	303	4.33	110	6.48	165	6	152		—		—	31.3	14.2
8	200	8.63	219	8.44	214	0.44	11	0.75	19	5.25	133	12.85	326	5.67	114	6.48	165	6	152	1.32	34	5.87	149	43.0	19.5
10	250	10.77	250	10.55	268	0.50	13	0.75	19	6.25	159	15	381	6.77	172	8.74	222	6	152	1.74	44	7.44	189	77.0	35

** Compliance with the Standard for Butterfly Valves for Fire Protection Service, UL 1091, and Indicating Values, FM Class Number 1112.

† See Grooved Pipe Specification section

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

Visit our website for the most current information.

*Weighted average lead content ≤ 0.25%

NIBCO INC. WORLD HEADQUARTERS • 1516 MIDDLEBURY ST. • ELKHART, IN 46516-4740 • USA • PH: 1.800.234.0227 TECH SERVICES PH: 1.888.446.4226 • FAX: 1.888.336.4226 • INTERNATIONAL OFFICE PH: +1.574.295.3327 • FAX: +1.574.295.3455

AHEAD OF THE FLOW®

SE/ANSI 6

NSF/ANSI 372

350 PSI WWP UL/FM Butterfly Valves

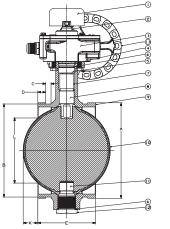
Designed for normally closed position monitoring

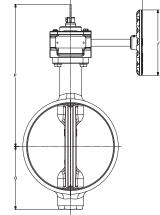
Fire Protection Valve • Grooved Mechanical Style • Nylon Coated Ductile Iron Body • Extended Neck • Elastomer Encapsulated Disc • Factory Installed Internal Monitoring Switches • Compatible with IPS Pipe

350 PSI/24 Bar Non-Shock Cold Water $2^{1\!/_2 \prime\prime}$ - 10"

Warning: These valves are <u>not</u> to be used between the water source and sprinkler head.

UL/ULC LISTED** • 21/2" - 10" LISTED FOR INDOOR AND OUTDOOR SERVICE • THIRD PARTY CERTIFIED TO NSF/ANSI 61 AND 372 • END CONNECTION PER AWWA C606


		MATERIAL LIST
	PART	SPECIFICATION
1	Indicator Flag	Painted Steel
2	Stem Adapter	Steel
3	Gear Operator	Cast Iron and Steel
4	Retaining Ring	Carbon Steel
5	Cartridge Seal	Brass ASTM C36000
6	Stem Seals	EPDM
7	Upper Stem	Stainless Steel ASTM A582 Type 416
8	Upper Bushing	Steel with PTFE Lining
9	Body	Ductile Iron ASTM A395 with Polyaminde Coating
10	Disc	Ductile Iron ASTM A536 with EPDM Encapsulation
11	Lower Bushing	Steel with PTFE Lining
12	Lower Stem	Stainless Steel ASTM A582 Type 416
13	Handwheel	Cast Iron


Note: Comes with two factory mounted internal supervisory switches. Uses NIBCO model T1447532 PP switch. See I & M manual for installation and wiring instructions.

Ground post or wall post not available. Normally closed monitored.

GD-6865-C-8N 2½", 3", 4", 6", 8", 10"

DIMENSIONS—WEIGHTS

				Dimensions										_											
S	IZE		A	E	3	(0		D		E		F		G		1		J		K		L	Wei	ight
In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	Lbs.	Kg.
2½″	65	2.88	73	2.72	69	0.31	8	0.63	16	3.81	97	8.95	227	2.20	56	4.92	125	4.25	108	_	_	_	_	9.5	4.3
3 OD	76.1	3.00	76.1	2.85	72	0.31	8	0.63	16	3.81	97	9.16	233	2.47	63	4.92	125	4.25	108	_	_	_	_	11.3	5.2
3	80	3.50	80.0	3.34	85	0.31	8	0.63	16	3.81	97	9.16	233	2.47	63	4.92	125	4.25	108	_	_		_	11.6	5.3
4	100	4.50	114.3	4.33	110	0.38	10	0.63	16	4.56	116	10.00	254	3.00	76	4.92	125	4.25	108		_	_		15.0	6.8
6 OD	165.1	6.50	165.1	6.33	161	0.38	10	0.63	16	5.81	148	11.92	303	4.33	110	6.48	165	6	152	_	_	_	_	31.5	14.3
6	150	6.63	168.3	6.45	164	0.38	10	0.63	16	5.81	148	11.92	303	4.33	110	6.48	165	6	152	_	—		—	31.3	14.2
8	200	8.63	219	8.44	214	0.44	11	0.75	19	5.25	133	12.85	326	5.67	114	6.48	165	6	152	1.32	34	5.87	149	43.0	19.5
10	250	10.77	250	10.55	268	0.50	13	0.75	19	6.25	159	15	381	6.77	172	8.74	222	6	152	1.74	44	7.44	189	77.0	35

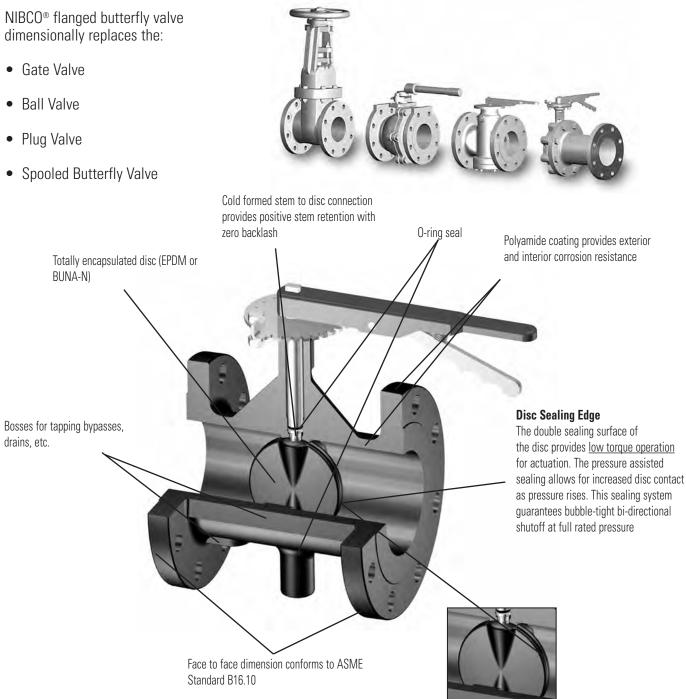
** Compliance with the Standard for Butterfly Valves for Fire Protection Service, UL 1091, and Indicating Valves, FM Class Number 1112. † See Grooved Pipe Specification section

MARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

*Weighted average lead content $\leq 0.25\%$

Visit our website for the most current information.

NIBCO INC. WORLD HEADQUARTERS • 1516 MIDDLEBURY ST. • ELKHART, IN 46516-4740 • USA • PH: 1.800.234.0227 TECH SERVICES PH: 1.888.446.4226 • FAX: 1.888.336.4226 • INTERNATIONAL OFFICE PH: +1.574.295.3327 • FAX: +1.574.295.3455 www.nibco.com



FC-2000 Series FD-5000 Series

Sizes 2"-12"

Your Best Valve Replacement Option

Visit our website for the most current information.

Note: Polyamide coating maximum temperature 200°F

200 PSI Flanged End Butterfly Valves

Polyamide Coated Cast Iron Body • Extended Neck • Cold form Stem Drive • Elastomer Encapsulated Disc • Flanged Ends • Maximum Temperature 200°F with EPDM Only • ASME B16.10 Face-to-Face Dimensions

Patent pending

Sizes 2" through 12"

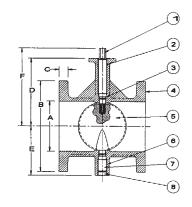
DESIGNED TO MEET MSS SP-67 STANDARD

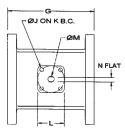
	MATERIAL LIST
PART	SPECIFICATION
1. Upper Stem	Stainless Steel, ASTM A582 Type 416
2. Upper Bushing	PTFE over Porous Bronze, Steel Backed
3. O-Ring	EPDM or BUNA-N
4. Body	Cast Iron ASTM A126 Class B
	with Polyamide Coating
5. Disc	Ductile Iron ASTM A395
	with EPDM or BUNA-N Encapsulation
6. Lower Bushing	PTFE over Porous Bronze, Steel Backed
7. Lower Stem	Stainless Steel, ASTM A582 Type 416
8. Dust Plug	PVC
9. Nameplate	Aluminum
lass 125 flange ends	

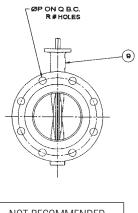
Class 125 flange ends Relyamide costing has NSE costified

Polyamide coating has NSF certification

DIMENSIONS — WEIGHTS


Si	ze								
In.	mm.	Α	В	C	D	E	F	G	J
2	50	2.11	6.0	0.62	5.69	3.16	6.94	7.00	0.437
2 1/2	6	2.59	7.0	0.69	5.78	3.25	7.03	7.50	0.437
3	80	3.07	7.5	0.75	5.99	3.54	7.24	8.00	0.437
4	100	4.03	9.0	0.94	6.99	4.35	8.24	9.00	0.437
5	125	5.05	10.0	0.94	7.47	4.85	8.72	10.00	0.437
6	150	6.07	11.0	1.00	8.28	5.94	9.53	10.50	0.437
8	200	7.98	13.5	1.12	9.25	6.87	10.50	11.50	0.437
10	250	10.02	16.0	1.19	11.03	9.18	12.28	13.00	0.562
12	300	12.00	19.0	1.25	12.01	10.16	13.26	14.00	0.562


S	ize								We	ight
In.	mm.	К	L	Μ	Ν	Р	Q	R	Lbs.	Kg.
2	50	3.25	3.25	0.50	0.37	0.75	4.75	4	16.5	7.5
2 1/2	2 65	3.25	3.25	0.50	0.37	0.75	5.50	4	24	10.9
3	80	3.25	3.25	0.50	0.37	0.75	6.00	4	28	12.7
4	100	3.25	3.25	0.66	0.50	0.75	7.50	8	44	20.0
5	125	3.25	3.25	0.66	0.50	0.88	8.50	8	53	24.1
6	150	3.25	3.25	0.78	0.56	0.88	9.50	8	65	30.0
8	200	3.25	3.25	0.78	0.56	0.88	11.75	8	94	42.7
10	250	5.00	4.75	1.06	0.75	1.00	14.25	12	155	70.4
12	300	5.00	4.75	1.06	0.75	1.00	17.00	12	214	97.6


WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

FC-27*5-0 *Optional disc EPDM (6) or BUNA (7)

NOT RECOMMENDED FOR STEAM SERVICE

Visit our website for the most current information.

NIBCO INC. WORLD HEADQUARTERS • 1516 MIDDLEBURY ST. • ELKHART, IN 46516-4740 • USA • PH: 1.800.234.0227 TECH SERVICES PH: 1.888.446.4226 • FAX: 1.888.336.4226 • INTERNATIONAL OFFICE PH: +1.574.295.3327 • FAX: +1.574.295.3455 www.nibco.com

41

285 PSI Flanged End Butterfly Valves

Polyamide Coated Ductile Iron Body • Extended Neck • Cold Form Stem Drive • Élastomer Encapsulated Disc • Élanged Ends • Maximum Temperature 200°F with EPDM Only • ASME B16.10 Face-to-Face Dimensions

Patent pending

Sizes 2" through 12"

Install between Std. ASME Class 125/150 flanges.

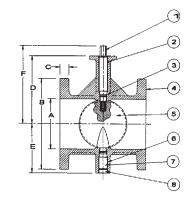
DESIGNED TO MEET MSS SP-67 STANDARD

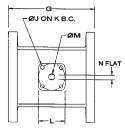
	MATERIAL LIST
PART	SPECIFICATION
1. Upper Stem	Stainless Steel, ASTM A582 Type 416
2. Upper Bushing	PTFE over Porous Bronze, Steel Backed
3. "O" Ring	EPDM or BUNA-N
4. Body	Ductile Iron ASTM A536
	with Polyamide Coating
5. Disc	Ductile Iron ASTM A395
	with EPDM or BUNA-N Encapsulation
6. Lower Bushing	PTFE over Porous Bronze, Steel Backed
7. Lower Stem	Stainless Steel, ASTM A582 Type 416
8. Dust Plug	PVC
9. Nameplate	Aluminum
Class 150 ends are standard. Pl	N10, PN16 available.

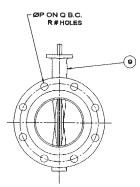
Sizes 2" through 8", 285 psi - 10" to 12", 200 PSI Polyamide coating has NSF certification

DIMENSIONS — WEIGHTS

Siz	ze								
In.	mm.	Α	В	C	D	E	F	G	Н
2	50	2.11	6.0	0.62	5.69	3.16	6.94	7.00	3.62
2 1/2	65	2.59	7.0	0.69	5.78	3.25	7.03	7.50	4.12
3	80	3.07	7.5	0.75	5.99	3.54	7.24	8.00	5.00
4	100	4.03	9.0	0.94	6.99	4.35	8.24	9.00	6.19
5	125	5.05	10.0	0.94	7.47	4.85	8.72	10.00	7.31
6	150	6.07	11.0	1.00	8.28	5.94	9.53	10.50	8.50
8	200	7.98	13.5	1.12	9.25	6.87	10.50	11.50	10.62
10	250	10.02	16.0	1.19	11.03	9.18	12.28	13.00	12.75
12	300	12.00	19.0	1.25	12.01	10.16	13.26	14.00	15.00


S	ize									We	eight
In.	mm.	J	К	L	Μ	Ν	Р	0	R	Lbs.	Kg.
2	50	0.437	3.25	3.25	0.50	0.37	0.75	4.75	4	16	7.3
2 1/2	2 65	0.437	3.25	3.25	0.50	0.37	0.75	5.50	4	23	10.4
3	80	0.437	3.25	3.25	0.50	0.37	0.75	6.00	4	27	12.3
4	100	0.437	3.25	3.25	0.66	0.50	0.75	7.50	8	43	19.5
5	125	0.437	3.25	3.25	0.66	0.50	0.88	8.50	8	52	23.6
6	150	0.437	3.25	3.25	0.78	0.56	0.88	9.50	8	65	29.5
8	200	0.437	3.25	3.25	0.78	0.56	0.88	11.75	8	93	42.2
10	250	0.562	5.00	4.75	1.06	0.75	1.00	14.25	12	154	69.9
12	300	0.562	5.00	4.75	1.06	0.75	1.00	17.00	12	210	95.3


WARNING: This product can expose you to chemicals including lead, ⚠ which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.


Visit our website for the most current information.

FD-57*5-0 *Optional disc EPDM (6) or BUNA (7)

NOT RECOMMENDED FOR STEAM SERVICE

NIBCO INC. WORLD HEADQUARTERS • 1516 MIDDLEBURY ST. • ELKHART, IN 46516-4740 • USA • PH: 1.800.234.0227 TECH SERVICES PH: 1.888.446.4226 • FAX: 1.888.336.4226 • INTERNATIONAL OFFICE PH: +1.574.295.3327 • FAX: +1.574.295.3455

AHEAD OF THE FLOW®

HIGH PERFORMANCE BUTTERFLY VALVE LCS-6822 (Class 150) LCS-7822 (Class 300)

APPLICATIONS

Ideally suited for commercial, industrial, and mechanical HVAC services. Use in other applications must be approved by the manufacturer

- · Heating hot water
- Condenser water
- Glycol
- Chilled water
- Compressed air
- Steam rated 2" 12" 150 psi for on/off applications and 50 psi modulating
- Vacuum to 27" Hg
- Chemical process
- Isolation and throttling
- Domestic water

MATERIALS & CONSTRUCTION

- Body constructed of carbon steel
- Stainless steel disc and stem
- Seats of reinforced PTFE for exceptional chemical and heat resistance
- · Welded disc pins
- Silicon is not used in the manufacture of this valve

DESIGN CRITERIA

- MSS SP-68 (Design)
- MSS SP-25 (Markings)
- API-609 Seat pressure/ temperature ratings/blow-out proof stem
- ASME/ANSI B16.34A, body pressure/temperature ratings
- ASME/ANSI B16.5 flange dimensions
- ISO 5211, actuator mounting top works
- ANSI Class 150 and Class 300
- Dual offset design

Class 150 Pictured

FEATURES

- Blow-out proof stem
- Uni-directional dead end service (Arrow on body indicates flow direction)
- Maximum operating temperature 400°F at 100 psi
- 100% production tested per MSS SP-68
- WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

Visit our website for the most current information.

www.nibco.com Revised 7/25/2018

Powder coated epoxy finish

Live loaded adjustable packing with

unique flush-mounted packing gland

One-piece stem

Direct mount actuation

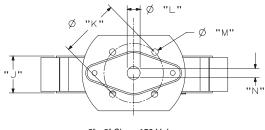
Integrally cast disc-stop

Dual offset design

•

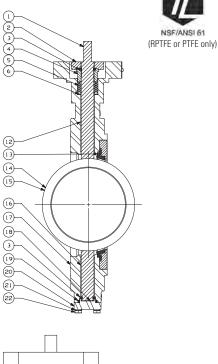
High Performance Butterfly Valve Series 6822 & 7822

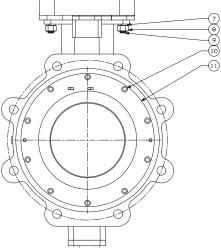
Carbon Steel Body • Stainless Steel Disc and Stem • ISO 5211 Actuation Mounting

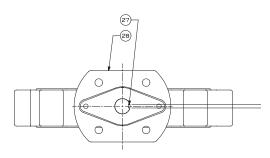

CLASS 150 - SIZES 2" THROUGH 30" CLASS 300 - SIZES 2" THROUGH 24"

ANSI Class 150 & 300

		MATERIAL LIST
	PART	SPECIFICATION
1.	Stem	Stainless Steel UNS ASTM A564 UNS S17400
2.	Flange, Gland	Stainless Steel ASTM A351 Grade CF8M
3.	Retainer, Stem (4)	Stainless Steel ASTM A276 UNS S31600
4.	Gland, Packing	Stainless Steel ASTM A276 UNS S31600
5.	Packing (set)	PTFE
6.	Retainer, Packing	Stainless Steel ASTM A276 UNS S31600
7.	Lockwasher (2)	Stainless Steel Type 304 18-8
8.	Nut (2)	Stainless Steel Type 304 18-8
9.	Stud (2)	Stainless Steel Type 304 18-8
10.	Screw, SHCS	Stainless Steel Type 304 18-8
11.	Retainer, Seat	Stainless Steel ASTM A276 UNS S31600
12.	Bushing, Upper	Stainless Steel Type 304 PTFE Coated
13.	Seat	PTFE 15% Glass Reinforced*
14.	Disc	Stainless Steel ASTM A351 Grade CF8M
15.	Pin, Disc (2)	Stainless Steel ASTM A276 UNS S31600
16.	Bushing, Lower	Stainless Steel TYPE 304 PTFE Coated
17.	Body	Carbon Steel ASTM A216 GRADE WCB
18.	Disc, Spacer	Stainless Steel ASTM A240 UNS S31600
19.	Seal, Lower	PTFE
20.	Cap, Body	Stainless Steel ASTM A351 Grade CF8M
21.	Lockwasher (4)	Stainless Steel Type 304 18-8
22.	Screw, Hex (4)	Stainless Steel Type 304 18-8
23.	Handle Assembly	Mallable Iron (shown separately)
24.	Plate, Throttle	Steel, Plated (shown separately)
25.	Screw, Hex	Carbon Steel, Plated (shown separately)
26.	Lockwasher	Carbon Steel, Plated (shown separately)
27.	Кеу	Carbon Steel ASTM A108 Grade 1045
28.	ID Plate	Stainless Steel

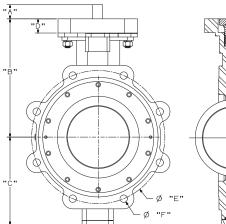

NOTE: For severe steam applications, contact NIBCO Technical Services. NOTE: If valve is installed opposite the flow arrow for dead end service a downstream flange is required.

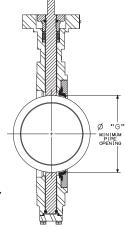

*Optional RPTFE, PTFE, UHMWPE, and GTFE available

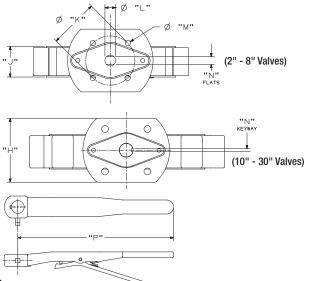


2" - 8" Class 150 Valves 2" - 6" Class 300 Valves

Visit our website for the most current information.


10" - 30" Class 150 Valves 8" - 24" Class 300 Valves


WARNING: Cancer and Reproductive Harm - www.P65Warnings.ca.gov.


NIBCO INC. WORLD HEADQUARTERS • 1516 MIDDLEBURY ST. • ELKHART, IN 46516-4740 • USA • PH: 1.800.234.0227 TECH SERVICES PH: 1.888.446.4226 • FAX: 1.888.336.4226 • INTERNATIONAL OFFICE PH: +1.574.295.3327 • FAX: +1.574.295.3455 www.nibco.com

High Performance Butterfly Valve Series 6822

SIZES 2" THROUGH 30"

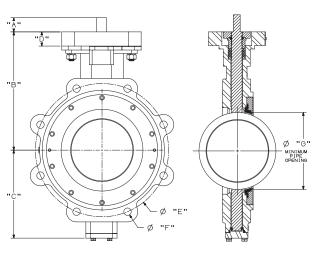
ANSI CLASS 150

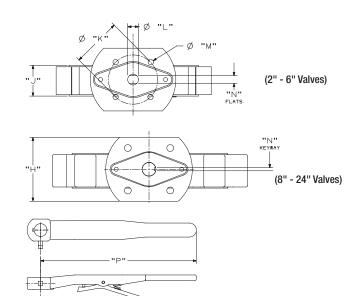
DIMENSIONS — WEIGHTS

	Gear													
Valve	Operator	Α			В		C	1	D		E	F		G
Size	Mounting	In.	mm	In.	mm.	In.	mm.	In.	mm.	In.	mm.	Threads	In.	mm.
2"	F07	1.25	31.75	5.78	146.8	3.94	100.1	1.25	31.8	4.75	120.65	4 X 5/8"-11 UNC	1.68	42.7
21/2"	F07	1.25	31.75	6.49	164.8	4.06	103.1	1.25	31.8	5.50	139.70	4 X 5/8"-11 UNC	2.24	56.9
3"	F07	1.25	31.75	6.77	172.0	4.37	111.0	1.25	31.8	6.00	152.40	4 X 5/8"-11 UNC	2.72	69.1
4"	F07	1.25	31.75	6.98	177.3	4.80	121.9	1.25	31.8	7.50	190.50	8 X 5/8"-11 UNC	3.38	85.9
5"	F07	1.25	31.75	8.39	213.1	6.38	162.1	1.25	31.8	8.50	215.90	8 X 3/4"-10 UNC	4.48	113.8
6"	F07	1.25	31.75	8.71	221.2	5.97	151.6	1.25	31.8	9.50	241.30	8 X 3/4"-10 UNC	5.34	135.6
8"	F10	1.25	31.75	10.43	264.9	7.76	197.1	1.60	40.6	11.75	298.45	8 X 3/4"-10 UNC	7.28	184.9
10"	F12	2.00	50.80	11.81	300.0	8.61	218.7	1.00	25.4	14.25	361.95	12 X 7/8"-9 UNC	9.13	231.9
12"	F12	2.00	50.80	12.80	325.1	10.63	270.0	1.00	25.4	17.00	431.80	12 X 7/8"-9 UNC	10.68	271.3
14"	F12	2.25	57.15	16.03	407.2	11.68	296.7	1.00	25.4	18.75	476.25	12 X 1"-8 UNC	12.14	308.4
16"	F16	3.00	76.20	16.73	424.9	13.78	350.0	1.88	47.8	21.25	539.75	16 X 1"-8 UNC	13.98	355.1
18"	F16	3.00	76.20	17.72	450.1	14.76	374.9	1.88	47.8	22.75	577.85	16 X 1-1/8"-8 UN*	16.18	411.0
**20"	F16	3.00	76.20	18.94	481.1	16.43	417.3	2.00	50.8	25.00	635.00	20 X 1-1/8"-8 UN*	18.13	460.5
**24"	F16/F25	4.00	101.60	23.23	590.0	19.37	492.0	2.50	63.5	29.50	749.30	20 X 1-1/4"-8 UN*	21.17	537.7
**30"	F25	5.33	135.38	26.90	683.3	24.24	615.7	3.00	76.2	36.00	914.4	28 X 1-1/4"8 UN*	26.87	682.5

*SPECIAL PITCH CAP SCREW THREAD REQUIRED PER MSS SP-68 SPECIFICATIONS.

**SHORT SCREWS REQUIRED FOR BLIND TAPPED HOLES NEAREST TO STEM FOR 20" AND LARGER VALVES. SEE INSTALLATION, OPERATION & MAINTENANCE GUIDE II FOR SERIES 6822 & 7822. Operating Torque


	0.101		ANOL C			1120 0022	G 7022.										operading	ioiquo
Valve		Н		J		К		L	N	/		N		Р	Valve	e Wt.	at 285	psi
Size	ln.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	Lbs.	Kg.	InLbs.	N-m
2"	4.15	105.4	1.69	42.93	2.76	70.10	0.500	12.700	0.37	9.40	0.375	9.525	13.75	349.3	12.5	6	290	33
21/2"	4.15	105.4	1.84	46.74	2.76	70.10	0.625	15.875	0.37	9.40	0.438	11.125	13.75	349.3	16	7	320	36
3"	4.15	105.4	1.88	47.75	2.76	70.10	0.625	15.875	0.37	9.40	0.438	11.125	13.75	349.3	18	8	350	40
4"	4.15	105.4	2.12	53.85	2.76	70.10	0.625	15.875	0.37	9.40	0.438	11.125	13.75	349.3	31	14	510	58
5"	4.15	105.4	2.25	57.15	2.76	70.10	0.750	19.050	0.37	9.40	0.500	12.700	13.75	349.3	38	17	725	82
6"	4.15	105.4	2.25	57.15	2.76	70.10	0.750	19.050	0.37	9.40	0.500	12.700	13.75	349.3	44	20	845	95
8"	5.12	130.0	2.50	63.50	4.02	102.11	0.875	22.225	0.44	11.18	0.625	15.875	_	_	68	31	1430	162
10"	5.25	133.4	2.83	71.88	4.92	124.97	1.125	28.575	0.56	14.22	1/4"	X 1/4"		_	104	47	2400	271
12"	5.25	133.4	3.19	81.03	4.92	124.97	1.125	28.575	0.56	14.22	1/4"	X 1/4"	_	_	148	67	3650	412
14"	5.25	133.4	3.62	91.95	4.92	124.97	1.375	34.925	0.56	14.22	5/16"	X 5/16"	_	_	201	91	6000	678
16"	6.50	165.1	4.00	101.60	6.50	165.10	1.875	47.625	0.81	20.57	3/8"	X 1/2"		_	309	140	8800	994
18"	6.50	165.1	4.50	114.30	6.50	165.10	1.875	47.625	0.81	20.57	3/8"	X 1/2"	_	_	346	157	11500	1299
20"	6.50	165.1	5.00	127.00	6.50	165.10	2.125	53.975	0.81	20.57	1/2"	X 1/2"		_	426	194	16500	1864
24"	11.02	279.9	6.06	153.92	6.50	165.10	2.555	64.897	0.81	20.57	3/4"	X 1/2"		_	675	307	24600	2779
30"	11.25	285.8	7.51	190.75	10.00	254.00	3.142	79.807	0.69	15.53	.866	X .788	_	—	1026	466	37175	4200


WARNING: Cancer and Reproductive Harm - www.P65Warnings.ca.gov.

AHEAD OF THE FLOW®

High Performance Butterfly Valve Series 7822

SIZES 2" THROUGH 24"

ANSI CLASS 300

DIMENSIONS — WEIGHTS

	Gear													
Valve	Operator	Α			В		C	1	D	E		F	G	
Size	Mounting	In.	mm	In.	mm.	In.	mm.	In.	mm.	In.	mm.	Threads	In.	mm.
2"	F07	1.25	31.75	5.78	146.8	3.94	100.1	1.25	31.8	5.00	127.00	8 X 5/8"-11 UNC	1.68	42.7
21/2"	F07	1.25	31.75	6.49	164.8	4.06	103.1	1.25	31.8	5.88	149.35	8 X 3/4"-10 UNC	2.24	56.9
3"	F07	1.25	31.75	6.77	172.0	4.37	111.0	1.25	31.8	6.62	168.15	8 X 3/4"-10 UNC	2.72	69.1
4"	F07	1.25	31.75	6.98	177.3	4.80	121.9	1.25	31.8	7.88	200.15	8 X 3/4"-10 UNC	3.38	85.9
5"	F07	1.25	31.75	8.39	213.1	6.38	162.1	1.25	31.8	9.25	234.95	8 X 3/4"-10 UNC	4.42	112.3
6"	F07	1.25	31.75	9.53	242.1	7.75	196.9	1.25	31.8	10.62	269.75	12 X 3/4"-10 UNC	4.07	103.4
8"	F10	2.00	50.80	11.42	290.1	8.91	226.3	2.00	50.8	13.00	330.20	12 X 7/8"-9 UNC	7.03	178.6
10"	F12	2.25	57.15	12.32	312.9	9.88	251.0	1.00	25.4	15.25	387.35	16 X 1"-8 UNC	9.11	231.4
12"	F12	3.00	76.20	13.90	353.1	11.00	279.4	1.00	25.4	17.75	450.85	16 X 1-1/8"-8 UN*	10.55	268.0
14"	F16	3.00	76.20	15.95	405.1	12.57	319.3	2.00	50.8	20.25	514.35	20 X 1-1/8"-8 UN*	11.99	304.5
16"	F16	3.00	76.20	18.31	465.1	15.83	402.1	2.00	50.8	22.50	571.50	20 X 1-1/4"-8 UN*	13.80	350.5
18"	F25	4.33	109.98	19.29	490.0	16.81	427.0	1.25	31.8	24.75	628.65	24 X 1-1/4"-8 UN*	15.81	401.6
**20"	F25	4.33	109.98	22.44	570.0	17.72	450.1	1.25	31.8	27.00	685.80	24 X 1-1/4"-8 UN*	17.50	444.5
**24"	F25	4.33	109.98	24.92	633.0	21.65	549.9	1.25	31.8	32.00	912.80	24 X 1-1/2"-8 UN*	21.50	546.1

*SPECIAL PITCH CAP SCREW THREAD REQUIRED PER MSS SP-68 SPECIFICATIONS.

**SHORT SCREWS REQUIRED FOR BLIND TAPPED HOLES NEAREST TO STEM FOR 20" AND LARGER VALVES. SEE INSTALLATION, OPERATION & MAINTENANCE GUIDE II FOR SERIES 6822 & 7822.

																	operating	j iorque
Valve		Н		J		К		L	N	L	N		P		Val	ve	at 700) psi
Size	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	Lbs.	Kg.	InLbs.	· N-m
2"	4.15	105.4	1.69	42.93	2.76	70.10	0.500	12.700	0.37	9.40	0.375	9.525	13.75	349.3	14	6	390	44
21⁄2"	4.15	105.4	1.84	46.74	2.76	70.10	0.625	15.875	0.37	9.40	0.438	11.125	13.75	349.3	21	10	425	48
3"	4.15	105.4	1.88	47.75	2.76	70.10	0.625	15.875	0.37	9.40	0.438	11.125	13.75	349.3	27	12	450	51
4"	4.15	105.4	2.12	53.85	2.76	70.10	0.625	15.875	0.37	9.40	0.438	11.125	13.75	349.3	49	22	725	82
5"	4.15	105.4	2.31	58.67	2.76	70.10	0.750	19.050	0.37	9.40	0.500	12.700	13.75	349.3	60	27	1000	113
6"	4.15	105.4	2.31	58.67	2.76	70.10	0.750	19.050	0.37	9.40	0.500	12.700	13.75	349.3	71	32	1250	141
8"	5.12	130.0	2.88	73.15	4.02	102.11	1.125	28.575	0.44	11.18	1/4"	X 1/4"	_	_	121	55	2025	229
10"	5.25	133.4	3.25	82.55	4.92	124.97	1.375	34.925	0.56	14.22	5/16"	X 5/16"	_	_	143	65	3775	426
12"	5.25	133.4	3.62	91.95	4.92	124.97	1.625	41.275	0.56	14.22	3/8"	X 3/8"	_	_	216	98	5725	647
14"	6.50	165.1	4.62	117.35	6.50	165.10	1.875	47.625	0.81	20.57	1/2"	X 3/8"	_	_	378	172	11500	1299
16"	6.50	165.1	5.25	133.35	6.50	165.10	1.875	47.625	0.81	20.57	1/2"	X 3/8"	_	_	488	222	15338	1733
18"	11.02	279.9	5.88	149.35	10.0	254.00	2.555	64.897	0.75	19.05	3/4"	X 1/2"	_	_	720	327	19516	2205
20"	11.02	279.9	6.30	160.02	10.0	254.00	2.555	64.897	0.75	19.05	3/4"	X 1/2"	_	_	855	389	26022	2940
24"	11.02	279.9	7.12	180.85	10.0	254.00	2.555	64.897	0.75	19.05	3/4"	X 1/2"	_	_				

Visit our website for the most current information.

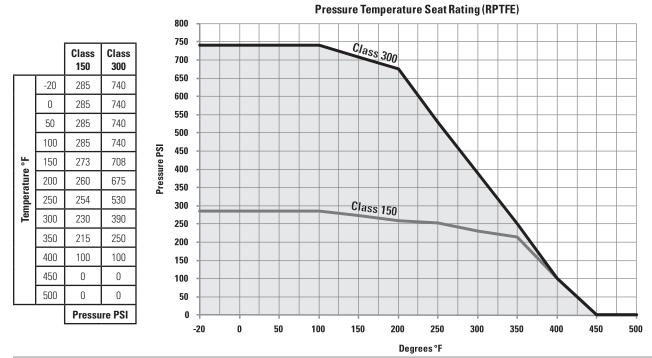
MARNING: Cancer and Reproductive Harm - www.P65Warnings.ca.gov.

NIBCO INC. WORLD HEADQUARTERS • 1516 MIDDLEBURY ST. • ELKHART, IN 46516-4740 • USA • PH: 1.800.234.0227

TECH SERVICES PH: 1.888.446.4226 • FAX: 1.888.336.4226 • INTERNATIONAL OFFICE PH: +1.574.295.3327 • FAX: +1.574.295.3455

www.nibco.com

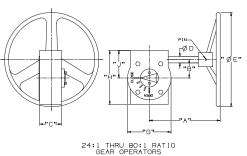
High Performance Butterfly Valve Technical Data

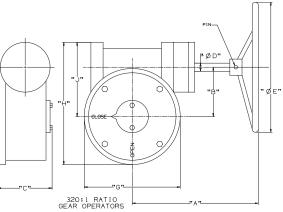

CLASS 150 HPBFV 6800 Series Flow Data

Valve Size	Cv													
	Rating	10°	20°	30°	40°	50°	60°	70 °	80°	90°				
2"	92	2	6	13	20	30	43	72	81	92				
2½ "	150	3	11	21	33	50	71	117	132	150				
3"	260	5	18	36	57	86	122	203	230	260				
4"	460	9	32	64	101	152	216	360	405	460				
5"	760	15	53	106	167	251	357	595	670	760				
6"	1150	23	81	161	253	380	540	897	1015	1150				
8"	2100	42	147	295	462	695	987	1640	1850	2100				
10"	3200	64	225	450	705	1056	1505	2496	2816	3200				
12"	4700	94	330	660	1035	1551	2210	3666	4136	4700				
14"	5800	116	406	815	1276	1915	2726	4525	5105	5800				
16"	8000	160	560	1120	1760	2640	3760	6240	7040	8000				
18"	10500	210	735	1470	2310	3465	4935	8190	9240	10500				
20"	14000	280	980	1960	3080	4620	6580	10920	12320	14000				
24"	21000	420	1470	2940	4620	6930	9870	16380	18480	21000				
30"		980	2750	4700	7800	11700	17000	23700	29600	33500				

CLASS 300 HPBFV 7800 Series Flow Data

Valve	Cv	DISC OPEN - Degrees												
Size	Rating	10°	20°	30°	40°	50°	60°	70°	80°	90°				
2"	92	2	6	13	20	30	43	72	81	92				
2 ½"	150	3	11	21	33	50	71	117	132	150				
3"	260	5	18	36	57	86	122	203	230	260				
4"	460	9	32	65	101	152	216	360	405	460				
5"	760	15	53	106	167	251	357	595	670	760				
6"	1150	23	81	161	253	380	540	987	1015	1150				
8"	1900	38	133	266	418	627	895	1485	1675	1900				
10"	2800	56	196	392	616	925	1316	2185	2465	2800				
12"	4100	82	287	575	905	1355	1930	3200	3610	4100				
14"	5500	110	385	770	1210	1815	2585	4290	4840	5500				
16"	7600	152	532	1065	1675	2510	3575	5930	6690	7600				
18"	9900	198	695	1390	2180	3270	4566	7725	8715	9900				
20"	13000	260	910	1820	2860	4290	6110	10140	11440	13000				
24"	19500	390	1365	2730	4290	6435	9165	15210	14160	19500				

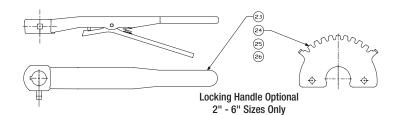

Cv = Flow in U.S. Gallons per minute of 60°F water with a 1 psi pressure drop across valve



NIBCO INC. WORLD HEADQUARTERS • 1516 MIDDLEBURY ST. • ELKHART, IN 46516-4740 • USA • PH: 1.800.234.0227 TECH SERVICES PH: 1.888.446.4226 • FAX: 1.888.336.4226 • INTERNATIONAL OFFICE PH: +1.574.295.3327 • FAX: +1.574.295.3455 www.nibco.com

High Performance Butterfly Valve Technical Data

OPERATORS



GEAR OPERATOR DIMENSIONS

Valve	e Size	Gea	ar Operat	tor	NIBCO	Detia	Ge		Gear		A	1	В		C	I	D
Class 150	Class 300	Fig	ure Numl	ber	Material Number	Ratio	Effici	rator iencv	Operator Mounting	In.	mm.	In.	mm.	In.	mm.	In.	mm.
2"	2"	G	6024:1-1-8	}	RG70001	24:1	15		F07	5.77	146.6	1.73	43.9	2.65	67.3	0.625	15.88
2-1/2", 3", 4"	2-1/2", 3",4"	G024:1	I-3-8 W/S	TSA-4	RG70002	24:1	15	%	F07	5.77	146.6	1.73	43.9	2.65	67.3	0.625	15.88
5" 6"	5" 6"		I-3-8 W/S		RG70003	24:1	15	%	F07	5.77	146.6	1.73	43.9	2.65	67.3	0.625	15.88
8"	_	G030:1	-1-12 W/S	STSA-6	RG70004	30:1	19	%	F10	9.50	241.3	2.50	63.5	3.00	76.2	0.750	19.05
_	8"	G	030:1-1-1	2	RG70005	30:1	19	%	F10	9.50	241.3	2.50	63.5	3.00	76.2	0.750	19.05
10"	_	G	030:1-2-1	2	RG70006	30:1	19	%	F12	9.50	241.3	2.50	63.5	3.00	76.2	0.750	19.05
12"	_	G	050:1-1-1	6	RG70007	50:1	20	%	F12	9.00	228.6	3.00	76.2	3.00	76.2	0.750	19.05
14"	10"	G	050:1-3-1	6	RG70008	50:1	20	%	F12	9.00	228.6	3.00	76.2	3.00	76.2	0.750	19.05
—	12"	G	080:1-2-1	6	RG70009	80:1	16	%	F12	10.75	273.1	4.75	120.7	4.40	111.8	1.000	25.40
16"	14"	G	080:1-1-1	6	RG70010	80:1	16	%	F16	10.75	273.1	4.75	120.7	4.40	111.8	1.000	25.40
18"	—	GO	80:1-1-1-2	20	RG70011	80:1	16	%	F16	10.75	273.1	4.75	120.7	4.40	111.8	1.000	25.40
—	16"	GC	0320:1-3-2	20	RG70020	320:1	15	%	F16	15.51	394.0	6.06	153.9	6.46	164.1	1.190	30.23
20"	—	GC)320:1-1-2	20	RG70012	320:1	15	%	F16	15.51	394.0	6.06	153.9	6.46	164.1	1.190	30.23
24"	18" 20"	GC)320:1-2-2	20	RG70013	320:1	15	%	F25	15.51	394.0	6.06	153.9	6.46	164.1	1.190	30.23
30"	24"	GC)320:1-4-2	20	RG70021	320:1	15	%	F25	15.51	394.0	6.06	153.9	6.46	164.1	1.190	30.23
Valve	e Size		E		G	ł	ł		J	Wei	ght	Mounting		Handw	/heel	Hand	Wheel
Class 150	Class 300	In.	mm.	In.	mm.	In.	mm.	In.	mm.	Lbs.	Kg	Screv	Screws		Size	Figur	re No.
2"	2"	8	203	4.00	101.6	5.07	128.8	2.90	73.7	12	5.5	5/16"-18	UNC	Ø.190 X 1.	63 LONG	RG7	0014
2-1/2", 3", 4"	2-1/2", 3",4"	8	203	4.00	101.6	5.07	128.8	2.90	73.7	12	5.5	5/16"-18	UNC	Ø.190 X 1.	63 LONG	RG7	0014
5" 6"	5" 6"	8	203	4.00	101.6	5.07	128.8	2.90	73.7	12	5.5	5/16"-18	UNC	Ø.190 X 1.	63 LONG	RG7	0014
8"	—	12	305	6.00	152.4	6.90	175.3	3.90	99.1	26.5	12	3/8"-16	UNC	Ø.190 X 1.	63 LONG	RG7	0015
—	8"	12	305	6.00	152.4	6.90	175.3	3.90	99.1	26.5	12	3/8"-16	UNC	Ø.190 X 1.	63 LONG	RG7	0015
10"	—	12	305	6.00	152.4	6.90	175.3	3.90	99.1	26.5	12	1/2"-13	UNC	Ø.190 X 1.	63 LONG	RG7	0015
12"	_	16	406	6.70	170.2	7.80	198.1	4.60	116.8	37.5	17	1/2"-13	UNC	Ø.190 X 1.	63 LONG	RG7	0016
14"	10"	16	406	6.70	170.2	7.80	198.1	4.60	116.8	37.5	17	1/2"-13	UNC	Ø.190 X 1.	63 LONG	RG7	0016
—	12"	16	406	10.25	260.4	11.50	292.1	6.25	158.8	72	33	1/2"-13	UNC	Ø.380 X 1.	81 LONG	RG7	0017
16"	14"	16	406	10.25	260.4	11.50	292.1	6.25	158.8	72	33	3/4"-10	UNC	Ø.380 X 1.	81 LONG	RG7	0017
18"	—	20	508	10.25	260.4	11.50	292.1	6.25	158.8	74	34	3/4"-10	UNC	Ø.380 X 2.	50 LONG	RG7	0018
_	16"	20	508	11.81	300.0	17.00	431.8	11.10) 281.9	200	91	3/4"-10 UNC		Ø.380 X 2.	50 LONG	RG7	0019
20"		20	508	11.81	300.0	17.00	431.8	11.10) 281.9	200	91	3/4"-10 UNC		Ø.380 X 2.	50 LONG		'0019
20																	
24"	18" 20"	20	508	11.81	300.0	17.00	431.8	11.10) 281.9	200	91	5/8"-11	UNC	Ø.380 X 2.	50 LONG	RG7	0019

LEVER HANDLE

ltem	Description	Material
23	Handle Assembly	Mallable Iron
24	Plate, Throttle	Steel, Plated
25	Screw, Hex	Carbon Steel, Plated
26	Lockwasher	Carbon Steel, Plated

Visit our website for the most current information.

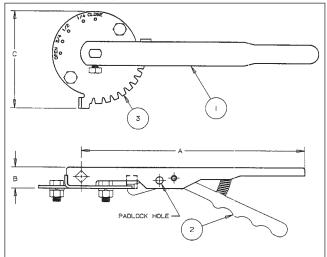
NIBCO INC. WORLD HEADQUARTERS • 1516 MIDDLEBURY ST. • ELKHART, IN 46516-4740 • USA • PH: 1.800.234.0227 TECH SERVICES PH: 1.888.446.4226 • FAX: 1.888.336.4226 • INTERNATIONAL OFFICE PH: +1.574.295.3327 • FAX: +1.574.295.3455 www.nibco.com

High Performance Butterfly Valve Technical Data

AHEAD OF THE FLOW®

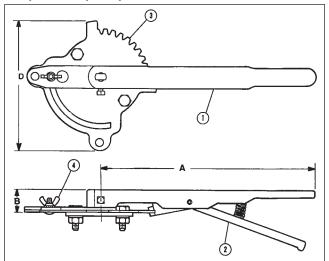
NIBC

	MATERIAL LIST
PART	SPECIFICATION
1. Stem	Stainless Steel UNS ASTM A564 UNS S17400
2. Flange, Gland	Stainless Steel ASTM A351 Grade CF8M
3. Retainer, Stem (2)	Stainless Steel ASTM A276 UNS S31600
4. Gland, Packing	Stainless Steel ASTM A276 UNS S31600
5. Packing	PTFE
6. Retainer, Packing	Stainless Steel ASTM A276 UNS S31600
7. Lockwasher (2)	Stainless Steel Type 304 18-8
8. Nut (2)	Stainless Steel Type 304 18-8
9. Stud (2)	Stainless Steel Type 304 18-8
10. Screw, SHCS	Stainless Steel Type 304 18-8
11. Retainer, Seat	Stainless Steel ASTM A276 UNS S31600
12. Bushing, Upper	Stainless Steel Type 304 PTFE Coated
13. Seat	PTFE 15% Glass Reinforced
14. Disc	Stainless Steel ASTM A351 Grade CF8M
15. Pin, Disc (2)	Stainless Steel ASTM A276 UNS S31600
16. Bushing, Lower	Stainless Steel Type 304 PTFE Coated
17. Body	Carbon Steel ASTM A216 Grade WCB
18. Disc, Spacer	Stainless Steel ASTM A240 UNS S31600
19. Seal, Lower	PTFE
20. Cap, Body	Stainless Steel ASTM A351 Grade CF8M
21. Lockwasher (4)	Stainless Steel Type 304 18-8
22. Screw, Hex (4)	Stainless Steel Type 304 18-8


Page

Options and Accessories Index

Operators


	.90
Lever-Lock	46
Gear	47
Stem Extensions, Silcone Free Issue	48

Lever-Lock Operator (Standard) LD/WD2000/3000/5022

The lever-lock handle and throttling plate provide throttling notches every 10° for excellent manual control in balancing up to 90° or shut off service. The valve may be padlocked in any one of the positions including opened or closed by virtue of a locking hole located in the handle and lever.

Position-Lock Operator (Optional) LD/WD2000/3000/5022

The position-lock can be used to set the valve in any position or as a memory stop so the valve may be reopened to the previous position. The valve may be padlocked in full open or full closed position.

Ordering: Sold as a field retrofitable kit only.

ſ	MATERIAL LIST							
PART	SPECIFICATION							
1. Handle	Polymer Coated Iron							
2. Lever-Lock	Zinc Plated Steel							
3. Throttle Plate	Zinc Plated Steel							

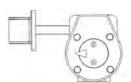
DIMENSIONS AND TORQUE OUTPUT

LD/WD Valve	FC/FD GD Valve	Lever	Throttle Plate	Throttle Plate/		Dim	ensions		Torque Rated Output in Inch-Pounds				
Size	Size (STD) (STD		(STD)	Infinite Pos. Kit	Α	В	C	D	At 60 pounds Pull	At 100 pounds Pull			
2"		T115106PP	T115138PP	T114840FG	10 1/2	1	4 5/8	6 3/16	540 In-Lbs.	900 In-Lbs.			
2 1/2" - 3'	2", 2 1/2", 3"	T115107PP	T115138PP	T114841FG	10 1/2	1	4 5/8	6 3/16	540 In-Lbs.	900 In-Lbs.			
4″		T115108PP	T115138PP	T114842FG	10 1/2	1	4 5/8	6 3/16	540 In-Lbs.	900 In-Lbs.			
	4" - 5"	T118446PP	T115138PP	T114843FG	10 1/2	1	4 5/8	6 3/16	540 In-Lbs.	900 In-Lbs.			
5″ - 6″		T115109PP	T115138PP	T114843FG	13 3/4	1	4 5/8	6 3/16	735 In-Lbs.	1225 In-Lbs.			
8"	6"	T115110PP	T115138PP	T114844FG	13 3/4	1	4 5/8	6 3/16	735 In-Lbs.	1225 In-Lbs.			

*Lever operators not recommended for 8, 10, and 12" valves due to torque loads.

DIMENSIONS AND TORQUE OUTPUT

LCS 6822 Class 150	LCS 7822 Class 300	LEVER	A	В	C & D	@ 60 LBS. PULL	@ 100 LBS. PULL
2"	2"	RG70031 & RG70034 Bushing	13.75"	1.25"	N/A	735 In-Lbs.	1225 In-Lbs.
2 1/2" - 4"	2 1/2" - 4"	RG70032	13.75"	1.25"	N/A	735 In-Lbs.	1225 In-Lbs.
5" - 6"	5" - 6"	RG70033	13.75"	1.25"	N/A	735 In-Lbs.	1225 In-Lbs.

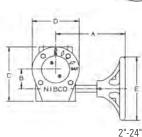


Butterfly Valves Options and Accessories

The NIBCO[®] butterfly valve can be provided with heavy-duty operator and indicator. Recommended for valves 8" and larger, for trouble-free operation in all moisture and weather conditions (not submersible). Operator is a self-locking worm gear type. **Equipped with adjustable stops at open and shut positions.** Ordering: Specify by adding (-5) to Fig. No., i.e., WD2000-5. Babbit Sprocket may be added to handwheel. See below for sizing information. Available options: Memory Stop Gear Operator Kit, 2" Square Operating Nut, Flag Indicator and

Gear operator options and accessories (2" through 12" 2000/3000/5022 Series commercial valves).

2" Square Operating Nut


Cast Iron Gear Operator


Handwheel for GO.

ØP.

Memory Stop

	GEAR OPE	RATOR DET	AIL FO	R SIZES :	2" TO 2	4" (LC	S6822	& LCS	7822)*	ŧ	GEAR OPERATOR ACCESSORIE & REPLACEMENT PARTS			
LCS6822 CL 150	LCS7822 CL 300	GEAR OPERATOR	RATIO	GEAR OP		DIME	NSION	IS (INC	HES)		STEM ADAPTER	SPROCKET RIM	REPLACEMENT	
HPBFV	HPBFV	NUMBER		WEIGHT	Α	В	C	D	Е	F	BUSHING	MODEL	HANDWHEEL	
2"	2"	RG70001	24:1	12	5.77	1.73	5.07	4.00	8.00	2.65	DIRECT	#2	RG70014	
21⁄2", 3", 4"	21⁄2", 3", 4"	RG70002	24:1	12	5.77	1.73	5.07	4.00	8.00	2.65	RG70022	#2	RG70014	
5", 6"	5", 6"	RG70003	24:1	12	5.77	1.73	5.07	4.00	8.00	2.65	RG70023	#2	RG70014	
8"	-	RG70004	30:1	26	9.50	2.50	6.90	6.00	12.00	3.00	RG70024	#21/2	RG70015	
-	8"	RG70005	30:1	26	9.50	2.50	6.90	6.00	12.00	3.00	RG70025	#21/2	RG70015	
10"	-	RG70006	30:1	26	9.50	2.50	6.90	6.00	12.00	3.00	RG70025	#21/2	RG70015	
-	10"	RG70008	50:1	37	9.00	3.00	7.80	6.70	16.00	3.00	RG70026	#3.5	RG70016	
12"	-	RG70007	50:1	37	9.00	3.00	7.80	6.70	16.00	3.00	RG70025	#3.5	RG70016	
-	12"	RG70009	80:1	72	10.75	4.75	11.50	10.25	16.00	4.40	RG70027	#3.5	RG70017	
14"	-	RG70008	50:1	37	9.00	3.00	7.80	6.70	16.00	3.00	RG70026	#3.5	RG70016	
16"	-	RG70010	80:1	72	10.75	4.75	11.50	10.25	16.00	4.40	RG70028	#3.5	RG70017	
18"	-	RG70011	80:1	74	10.75	4.75	11.50	10.25	20.00	4.40	RG70028	#4	RG70018	
20"	-	RG70012	320:1	200	15.51	6.06	17.00	11.81	20.00	6.46	RG70029	#4	RG70019	
24"	-	RG70013	320:1	200	15.51	6.06	17.00	11.81	20.00	6.46	RG70030	#4	RG70019	

* No square operating nuts, flag indicators, or memory stop kits are available for LCS6822 and LCS7822 butterfly valves.

GE	AR OPERAT	OR DETAIL	FOR SI	ZES 2" T() 48" (1	000/20)00/300	GEAR OPERATOR ACCESSORIES & REPLACEMENT PARTS								
LD / WD VALVE	FC / FD / GD VALVE	GEAR OPERATOR	RATIO				SIONS	(INCH	ES)		STEM ADAPTER	SPROCKET RIM	SQUARE Operating	FLAG INDICATOR	MEMORY STOP KIT	REPLACEMENT HANDWHEEL
SIZE	SIZE	NUMBER		WEIGHT	A	В	C	D	E	F	BUSHING	MODEL	NUT			
2"	-	T117118PP	24:1	10	7.64	1.77	5.04	4.24	5.91	2.79	T046652PP	#1½	T117792FC	T116682PP	T026196PP	T117122PP
21⁄2"- 3"	2"-21⁄2"-3"	T117118PP	24:1	10	7.64	1.77	5.04	4.24	5.91	2.79	T046653PP	#1½	T117792FC	T116682PP	T026196PP	T117122PP
4"	-	T117118PP	24:1	10	7.64	1.77	5.04	4.24	5.91	2.79	T046654PP	#1½	T117792FC	T116682PP	T026196PP	T117122PP
5"- 6"	4"- 5" - 6"	T117118PP	24:1	10	7.64	1.77	5.04	4.24	5.91	2.79	T046655PP	#1½	T117792FC	T116682PP	T026196PP	T117122PP
8"	8"	T117119PP	24:1	14	9.53	1.77	5.04	4.24	9.84	2.79	T046656PP	#2½	T117792FC	T116682PP	T026196PP	T117123PP
10"	-	T117120PP	30:1	23	11.54	2.48	6.93	6.06	9.84	3.26	-	#2½	T117793FC	T116682PP	T026197PP	T117124PP
12"	10"- 12"	T117121PP	30:1	23	11.54	2.48	6.93	6.06	9.84	3.26	-	#21⁄2	T117793FC	T116682PP	T026197PP	T117124PP
14"	-	T116697PP	50:1	26	12.87	3.08	7.48	6.28	11.81	3.26	-	#21⁄2	T117793FC	T116682PP	T026198PP	T117169PP
16"	-	T026150PP	80:1	58	13.58	4.72	10.24	9.84	11.81	4.27	-	#21⁄2	T118099FC	T116682PP	T026199PP	T026131PP
18"	-	T026151PP	80:1	57	15.04	4.72	10.24	9.84	15.75	4.27	-	#3½	T118099FC	T116682PP	T026199PP	T026142PP
20"	-	T026211PP	291:1	90	18.11	4.13	11.42	9.84	11.81	5.24	-	#2½	T118099FC	T116682PP	T026199PP	T026131PP
24"	-	T026212PP	291:1	90	18.11	4.13	11.42	9.84	11.81	5.24	-	#2½	T118099FC	T116682PP	T026199PP	T026131PP
30"	-	T117841PP	540:1	174	13.23	5.98	15.16	11.81	15.75	6.54	-	#3½	-	-	-	T1443627PP
36"	-	-	648:1	332	15.71	8.46	20.40	17.17	15.75	7.83	-	#3½	-	-	-	T1443627PP
42"	-	-	800:1	510	17.17	14.21	21.02	19.69	17.72	11.85	-	#3½	-	-	-	T1443629PP
48"	-	-	800:1	510	17.17	14.21	21.02	19.69	17.72	11.85	-	#3½	-	-	-	T1443629PP

Notes:

1. Gear operator comes with handwheel. Larger sizes come with handwheel unattached. Pin is taped to handwheel.

2. Stem adapter bushing must be ordered seperately when needed for smaller size valves.

3. All other accessories must be ordered separately. (Sprocket rim, square operator nut, flag indicator & memory stop kit.)

Visit our website for the most current information.

NIBCO INC. WORLD HEADQUARTERS • 1516 MIDDLEBURY ST. • ELKHART, IN 46516-4740 • USA • PH: 1.800.234.0227 TECH SERVICES PH: 1.888.446.4226 • FAX: 1.888.336.4226 • INTERNATIONAL OFFICE PH: +1.574.295.3327 • FAX: +1.574.295.3455

Butterfly Valves Options and Accessories

THE FLOW®

Stem Extensions

 $|| = \{$

Stem extensions can be furnished to permit remote operation of butterfly valves in any required length. The top flange of an extension stem, plug shaft diameter, and distance across flats on plug shaft are the same size as the valve selected. This allows interchangeability of gear operators, actuators, and adapter bushings from valve mounting flange to extension stem top flange. When ordering, specify valve size, figure number, and the exact distance from the valve flange to the top of extension flange (customer-specified length shown at right). Stem extensions are available in lengths up to 10 feet. For stem extensions in excess of 10 feet consult factory. See NIBCO Fire Protection catalog for wall post and ground post information.

AHEAD OF

CUSTOMER-SPECIFIED LENGTH

MATERIAL LIST

	PART	SPECIFICATION
1.	Plug	Steel
2.	Top Flange Bushing	Bronze
3.	Top Flange	Steel
4.	Housing (Steel Pipe)	Steel
5.	Plug and Rod Coupling	Steel
6.	Rod	Steel
7.	Rod and Stem Coupling	Steel
8.	Bottom Flange	Steel

DIMENSIONS

SIZE	Α	В	C
2"-12"	2.88	1.125	1.12

14"-24" consult NIBCO Technical Services

NOTE: extension length limited by "B" dimension

Some High Performance Valves will require stem extensions for adequate chain clearance. Contact NIBCO Tech Services.

Adjustable Sprocket Rim

The Babbitt Adjustable Sprocket Rim will provide for remote operation of butterfly valves in high, normally out-of-reach locations. When ordering specify either the sprocket and chain number or the NIBCO valve figure number and size. The chain length must also be specified. (Chain length is determined by Height x 2 + 2 ft.)

Sprocket Rim Retaining Harness

Babbitt Adjustable Sprocket Rims installed in overhead locations may require a secondary retention harness. It is the responsibility of the installer to determine need for such devices. For those locations use The Babbitt Safety Wheel Cap Kit. The kit contains a ductile iron cap, four stainless steel clamps, a stainless steel cable, and screws to secure the sprocket and hand wheel to a nearby pipe or structural member.

No Silicone Used - Silicone Free Issue

All butterfly valves may incorporate the use of silicone in either grease or aerosol form during the assembly. LD/WD/GD series butterfly valves can be special ordered as "Assemble-Dry" without test. These valves will not be assembled using silicon in the form of grease or aerosol spray. Note: Even though provisions are made to assemble valves and not incorporate the use of silicone lubricants, the potential for it to be present as air-borne particles prevents us from certifying that our valves are 100% silicone free

Visit our website for the most current information.

DIMENSIONS - SPECIFICATIONS

	Dia. of		Dia. of		Chain	
	Sprocket		HDWL	Chain	Weight	Butterfly
Size	Wheel	Weight	Rim	Size	per 100'	Valve
No.	in Inches	in Lbs.	Will Fit	No.	in Lbs.	Size
1	5 7/8	4	4 1/8 to 5 7/8	1/0	17 1/2	—
1 1/2	7 1/2	5	6 to 7 1/2	1/0	17 1/2	2-6″
2	9	8	7 3/4 to 9	1/0	17 1/2	—
2 1/2	12 1/2	15	9 1/2 to 12 1/2	4/0	30	8-16",
						20", 24"
3	15 1/2	21	12 3/4 to 15 1/2	4/0	30	_
3 1/2	19	25	15 3/4 to 19	4/0	30	18", 30"- 48"

5/0

35

	Size No.	Harness Kit	Chain Masterlink	Chain No.
Γ	1	DC0001101		
Γ	1.5	RG00SH01	RG00ML1	RG00280
Γ	2]	
Γ	2.5	RG00SH25		
Γ	3	1	RG00ML25	RG00480
Γ	3.5	DODOULOS]	
ſ	4	RG00SH35	RG00ML4	RG00630

19 1/4 to 22

34

Engineering Data Index

PageSpecifications.54-55Flow Data.56-57Property of Materials.58-61

Technical Information — **Butterfly Valves**

Dimensional Requirements of Flange/Pipe Connections	. 62
Installation Guide	. 63
Capscrew & Bolt Data	. 63
Gear Operator Installation	4-65
Resilient Liner Materials	. 66
Metals Used in Valves & Fittings	. 67
Torque Data	. 68
Actuation Data Sheet	. 69
Figure Number Comparison Chart	. 70

Specifications

NIBCO[®] butterfly valves are designed and manufactured to give maximum performance on recommended service at the lowest possible initial and upkeep cost. They are designed to meet standards, codes, and/or specifications, as noted.

American Petroleum Institute

API-609 DESIGN

Manufacturers Standardization Society of the Valve and Fitting Industry, Inc.

MSS SP-25, MSS SP-67 (shell test performed upon request), MSS SP-68

United States Coast Guard — CG190 Now called "CIMDTINST — M16714.3"

"Equipment list"

"Items approved, certified or accepted under Marine Inspection and Navigation Laws"

NIBCO valves, fittings and flanges are listed in this document.

Code of Federal Regulations Title 46 Shipping Parts 41 to 69

The Code of Federal Regulations is a codification of the general and permanent rules published in the Federal Regulations by the Executive Departments and Agencies of the Federal Government.

This regulation is constantly revised to reference the latest ANSI, ASTM & MSS Standards _____

NIBCO 2000 and 3000 services have been designated as suitable for Category A service.

NAVY — APL, CID, NSN

"Department of the Navy" "Navy Ships Parts Control Center"

Mechanicsburg, PA

The Department of the Navy, when using standard commodity type valves, assigns APL-CID numbers to each individual valve manufactured by a company. Valves of the same figure number, but of different size get different CID numbers.

The (APL) Allowance Parts List, (CID) Code Identification Numbers and (NSN) National Stock Numbers are used by the Navy in the Parts Control Center to order replacement valves or parts of valves that are installed on board United States Navy vessels.

When a Navy vessel is being built, the shipyard doing the construction must apply to the Parts Control Center for CID numbers for all valves before the Navy will accept delivery of the vessel.

On many NIBCO valves, the CID and NSN numbers have been assigned. Consult NIBCO for more information.

Specifications (continued)

American Bureau of Shipping — Rules for Building

The American Bureau of Shipping states in Article 36.15.1; All valves are to be constructed and tested in accordance with a recognized standard, such as ANSI, MSS or other, acceptable to the Bureau. They are to bear the trademark of the manufacturer legibly stamped or cast on the exterior of the valve, as well as the pressure rating class for which the manufacturer guarantees the valve will meet the requirements of the standards. The following NIBCO butterfly valves are manufactured in facilities approved by ABS for marine service: LD or WD 2000 and 3000 series. ABS Certificate No.: 00N09621-X Manufacturers Federal Code: NIBCO — 12168

LLoyd's Register of Shipping

NIBCO is an approved manufacturer of grey and ductile iron butterfly valves.

Det Norske Veritas

NIBCO® DI Butterfly valves are in compliance with DNV Rules for classification of ships and mobile offshore units. DNV standards for Certification 2.09 No. 101. approved for fresh water, sea water, sanitary water, water ballast, cargo oil transfer and bilge lines

Sample Butterfly Valve Specification Line Control Valves 2" or larger

Butterfly Valves: Valve shall be full lug or wafer body style. Valves designed to comply with MSS SP-67 Standard. The valves shall be rated at least 200 PSI (2" - 12") and 150 PSI (14" - 48") bi-directional differential pressure. Body to have 2" extended neck for insulation and shock resistant ductile iron. Valves to have aluminum bronze disc and molded in or cartridge seat of EPDM rubber. Stem shall be 400 series stainless steel. Top and bottom stem bushings of dissimilar material are required with a positive stem retention mechanism. Sizes 2" - 6" shall be lever operated with a 10 position throttling plate; sizes 8" and larger shall be gear operated. Lug style valves shall be capable of providing bi-directional "Dead End Service" minimally at 200 PSI (2-12"), 150 PSI (14"-24"), 100 PSI (30"-48") without the need for down stream flange.

Acceptable valves: NIBC0 LD-2000 (2" - 12"), LD-1000 (14" - 48") C_v Values for Valves

Flow Data

Liquid Flow:

$$Q = C_v \sqrt{\frac{\Delta P}{S}}$$
 or $\Delta P = S \left(\frac{Q}{C_v}\right)^2$

where... Q = flow rate (gallons per minute) $\Delta P = pressure drop across valve (psi)$ S = specific gravity of media

This equation is good for turbulent flow and for liquids with viscosities near that of water.

(Cv is defined as the flow in GPM that a valve will carry with a pressure drop of 1.0 psi when the media is water at 60°F.) (The specific gravity of water is 1 (one).)

Valve Size																	
Size (mm.)	4	8	10	15	20	25	32	40	50	65	80	90	100	125	150	200	
Size (In.)	1/8	1/4	3/8	1/2	3/4	1	1 1/4	1 1/2	2	2 1/2	3	3 1/2	4	5	6	8	
GATES																	
S/T-29	0.5	2	4.9	9.1	22	40	65	95	175								
S/T-111, 113, 131, 133 134, 136, 154, 174, 176	_	5.6	10.7	17.6	32	54	97	135	230	337	536	710	960	1,525	2,250		
T/F-617, 619, 667, 669, 607, 609 F-637, 639									215	335	510	710	945	1,525	2,250	4,150	
GLOBES																	
S/T-211, 235, 256 275-Y	0.61	1.16	2.2	3.64	6.65	11.1	20	28	48	70	111	_	198				
Т-275-В		1.16	2.21	3.64	6.65	11.1	20	28	48	70	111						
F-718, F-738								-	45	70	105		195	315	465	860	
CHECKS																	
S/T-413, 433, 473 (Swing)	_	1.3	2.5	4.8	14.3	24	43	60	102	150	238	315	435	675	1,000		
S/T-480 (Poppet)			3.7	6.86	16.3	30	49	72	130								
F-908 (Swing)				-						243	356		665	1,073	1,584	2,937	
T/F-918, 968, 938 (Swing)									137	221	327	_	605	975	1,440	2,670	
KW-900-W									60	105	184		354	577	801	1,500	
F-910, 960 (Poppet)										110	155		278	431	625	1,115	
W-910, 960 (Poppet)									66	88	130		228	350	520	900	
G-920-W		-							77	129	209	_	358	573	898	1,740	
W-920-W		-							76	161	224	_	400	648	1060	1,890	
BALL																	
F-510, 530				11	25	45	_	137	217		482	_	790	_	1,144	2,164	
F-515, 535		_	_	25	50	85	_	259	440	840	1,400	_	2,350	_	5,200	10,200	
F-565	_	_	_	_	_	75	_	235	400		1,180	_	2,040	_	_		
T-560-BR/CS/S6	_	4	4	5	12	22	35	52	95		_						
T-570	_	_	_	7	12	25	38	52	95		_						
T/S-580		_		5.8	13.9	27	44	64	100	_	_						
T/S-580-70		_		_	_	_	38.5	76	101.4	183	390						
T/S-585-70		4.2	6.2	15.3	30.4	48.8	103	143	245	_							
TM-585-70-66				15.3	30.4	48.8	103	143	245	_	_						
AT-585-70-66				_		_	_	_	_	183	_						
T-580-70-W3		_	_			_	21.6	38	48.5		_						
T/S-585-70-W3	_	_		6	12	19.5	_	_	_	_	_						
T-580 (CS-S6)	_	6	12	15	23	36	44	64	114		_						
T/S-590-Y	_	_	_			_	44	64	100	183	390						
T/S-595-Y		5.9	11.4	18.7	34	57	103	143	245	310	_						
TM/KM-595 (CS-S6)		6	12	19	37	64	103	143	245	_	_						
T/K-595 (CS-S6)		6	12	19	37	64	103	143	245		_						
BUTTERFLY																	
LD/WD-1000, 2000, 3000, 5000							_		166	247	340		660	1,080	1,613	3,759	
GD-4765, 4775 FC-2700, FD-5700									145	195	290		600	930	1,600	3,450	
NOTE: flow data for angle valves use globe Cv times 1.25:															-		-

NOTE: flow data for angle valves use globe Cv times 1.25: Bronze Angles — 311 335 375 376 AP

Bronze Angles — 311, 335, 375, 376-AP Iron Angles — 818, 869, 831

1=1 AHEAD OF THE FLOW®

Gas Flow:

$$Q = 1360 C_V \sqrt{\frac{\Delta P \times P_1}{ST}}$$

where ... Q = gas flow (SCFH—std. cu. ft/hr) S = specific gravity of gas (air = 1.0) T = temp—degrees Rankine (°F + 460) △P = pressure drop across valve (psi)

P1 = upstream pressure (psia) absolute

NOTE: $\triangle P$ must be less than .5 P1. (Flow is critical when $\triangle P$ is greater than .5 P1.)

050		252	400	450			750		For	throttl	ing us	e with	disc p	i ng artiall lves a	y oper	n. Mult	iply C	v by fa	ctor.
250	300	350	400	450	500	600	750	900	<u> </u>										400
10	12	14	16	18	20	24	30	36	0	10	20	30	40	50	60	70	80	90	100
									1										
										_									
0 700	0.005	10.000	10.075	22,000	20.000	40 570													
6,700	9,925	13,800	18,375	23,600	29,600	43,570													
									-										
										0.05	0.05	0.00	0.00	0.00	0.00	0.00	1.00	1.00	1.00
									0	0.35	0.65	0.90	0.93	0.96	0.98	0.99	1.00	1.00	1.00
 									0	0.030	0.035	0.06	0.10	0.16	0.24	0.32	0.47	0.68	1.00
 1,390									0	0.35	0.65	0.90	0.93	0.96	0.98	0.99	1.00	1.00	1.00
									1										
									-				v	VARNIN	IG				
									-										
4,730	6,985								-					ained h					
									4					ximatio					
4,300	6,350											nol tion							
2,357	3,742	0400	4400	F000	0000	10000	15400		-	high	ily critic e flow	cal flow measu	or pre	ssure d	irop cal must l	re conc	ns. For lucted (n anv	
 2,357 1,770		3400	4400	5600	6900	10000	15400	22400		precis	e flow	measu	rement	s, tests	must l	conc	lucted o	on any	6
2,357 1,770 1,450	3,742 2,500	3400	4400	5600	6900	10000	15400	22400		precis valve n	e flow nention	measu ed with	rement nin this	s, tests	: must l g. Thro	ce conc ttling o	lucted o f ball v	on any alves is	3
2,357 1,770 1,450 3,180	3,742 2,500 4,950								•	precis valve n	e flow nention	measu ed with	rement nin this	s, tests catalo	: must l g. Thro	ce conc ttling o	lucted o f ball v	on any alves is	5
 2,357 1,770 1,450	3,742 2,500	3400 5,700	4400	5600 9,400	6900 12,000	10000	15400 33,000	22400		precis valve n not	e flow nention recom	measu ed with mende	rement nin this d wher	s, tests catalo valves	s must l g. Thro s are le	be conc ttling o ss than	lucted o f ball v 45° op	on any alves is ben.	
2,357 1,770 1,450 3,180 3,340	3,742 2,500 4,950 5,270								0°	precis valve n not	e flow nention recom 20°	measu ed with mende 30°	rement nin this d wher 40°	s, tests catalo valves 45°	s must l g. Thro s are le 50°	be cond ttling o ss than 60°	lucted of f ball v 45° op 70°	on any alves is ben. 80°	90°
2,357 1,770 1,450 3,180 3,340 3,507	3,742 2,500 4,950 5,270 5,516								0°	precis valve n not 10° 0.01	e flow nention recom 20° 0.05	measu ed with mende 30° 0.16	rement nin this d wher 40° 0.3	s, tests catalog valves 45° 0.37	must l g. Thro are le 50° 0.45	ttling o ss than 60° 0.58	lucted o f ball v 45° op 70° 0.71	on any alves is ben. 80° 0.87	90° 1
2,357 1,770 1,450 3,180 3,340	3,742 2,500 4,950 5,270								0° 0	precis valve n not 10° 0.01 0.01	e flow nention recom 20° 0.05 0.05	measur ed with mender 30° 0.16 0.16	rement hin this d wher 40° 0.3 0.3	s, tests catalo valves 45° 0.37 0.37	s must l g. Thro s are le 50° 0.45 0.45	60° 0.58 0.58	lucted of f ball v 45° op 70° 0.71 0.71	on any alves is ben. 80° 0.87 0.87	90°
2,357 1,770 1,450 3,180 3,340 3,507	3,742 2,500 4,950 5,270 5,516								0°	precis valve n not 0.01 0.01 0.01	e flow nention recom <u>20°</u> 0.05 0.05 0.05	measur ed with mender 30° 0.16 0.16 0.16	rement hin this d wher 40° 0.3 0.3 0.3	s, tests catalo n valves 45° 0.37 0.37 0.37	s must l g. Thro s are le 50° 0.45 0.45 0.45	60° 0.58 0.58	lucted o f ball v 45° op 70° 0.71	on any alves is pen. 80° 0.87 0.87 0.87	90° 1 1
2,357 1,770 1,450 3,180 3,340 3,507	3,742 2,500 4,950 5,270 5,516								0° 0 0	precis valve n not 10° 0.01 0.01	e flow nention recom 20° 0.05 0.05	measur ed with mender 30° 0.16 0.16	rement hin this d wher 40° 0.3 0.3	s, tests catalo valves 45° 0.37 0.37 0.37 0.37	s must l g. Thro s are le 50° 0.45 0.45	60° 0.58 0.58 0.58 0.58 0.58	lucted of f ball va 45° op 0.71 0.71 0.71	on any alves is ben. 80° 0.87 0.87	90° 1 1 1
2,357 1,770 1,450 3,180 3,340 3,507	3,742 2,500 4,950 5,270 5,516								0° 0 0 0 0	precis valve n not 0.01 0.01 0.01	e flow nention recom 0.05 0.05 0.05 0.05	measur ed with mender 0.16 0.16 0.16 0.16	rement nin this d wher 0.3 0.3 0.3 0.3	s, tests catalo n valves 45° 0.37 0.37 0.37	s must l g. Thro s are le 50° 0.45 0.45 0.45 0.45	60° 0.58 0.58	lucted of f ball vi 45° op 0.71 0.71 0.71 0.71	on any alves is pen. 80° 0.87 0.87 0.87 0.87	90° 1 1 1 1
2,357 1,770 1,450 3,180 3,340 3,507	3,742 2,500 4,950 5,270 5,516								0° 0 0 0 0	precis valve n not 0.01 0.01 0.01 0.01 0.01	e flow nention recom 0.05 0.05 0.05 0.05 0.05	measur mender 30° 0.16 0.16 0.16 0.16 0.16	40° 0.3 0.3 0.3 0.3 0.3 0.3	s, tests catalon valves 45° 0.37 0.37 0.37 0.37 0.37	s must k g. Thro s are le 50° 0.45 0.45 0.45 0.45 0.45	60° 60° 0.58 0.58 0.58 0.58 0.58 0.58	lucted of f ball vi 45° op 0.71 0.71 0.71 0.71 0.71	on any alves is ben. 80° 0.87 0.87 0.87 0.87 0.87	90° 1 1 1 1 1
2,357 1,770 1,450 3,180 3,340 3,507	3,742 2,500 4,950 5,270 5,516								0° 0 0 0 0 0 0 0 0	precis valve n not 0.01 0.01 0.01 0.01 0.01 0.01 0.01	e flow nention recom 0.05 0.05 0.05 0.05 0.05 0.05	measur ed with mender 0.16 0.16 0.16 0.16 0.16 0.16	40° 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	s, tests catalog valves 0.37 0.37 0.37 0.37 0.37 0.37 0.37	s must k g. Thro s are le 50° 0.45 0.45 0.45 0.45 0.45 0.45	60° 60° 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58	lucted of f ball v. 45° op 0.71 0.71 0.71 0.71 0.71 0.71 0.71	80° 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87	90° 1 1 1 1 1 1 1
2,357 1,770 1,450 3,180 3,340 3,507	3,742 2,500 4,950 5,270 5,516								0° 0 0 0 0 0 0 0 0 0	precis valve n not 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	e flow nention recom 0.05 0.05 0.05 0.05 0.05 0.05 0.05	measur ed with mender 0.16 0.16 0.16 0.16 0.16 0.16 0.16	erement nin this d wher 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	s, tests catalo, valves 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37	must l g. Thro are le 50° 0.45 0.45 0.45 0.45 0.45 0.45 0.45	60° 60° 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58	lucted of f ball v. 45° op 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71	BO° Solution 80° 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87	90° 1 1 1 1 1 1 1 1 1
2,357 1,770 1,450 3,180 3,340 3,507	3,742 2,500 4,950 5,270 5,516								0° 0 0 0 0 0 0 0 0 0 0 0 0 0	precis valve n not 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	20° 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.	measured with mender 30° 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	40° 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	s, tests catalon valves 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37	must l g. Thro are le 50° 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	60° 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58	Iucted of ball v. 45° op 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71	B0° B0° 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87	90° 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2,357 1,770 1,450 3,180 3,340 3,507	3,742 2,500 4,950 5,270 5,516								0° 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	precis valve n not 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	20° 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.	measured with mender 30° 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	40° 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	s, tests catalon valves 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37	must b g. Thro s are le 50° 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	60° 60° 0.58 0.5	Iucted of ball vi 45° op 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71	80° 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87	90° 1 1 1 1 1 1 1 1 1 1 1 1
2,357 1,770 1,450 3,180 3,340 3,507	3,742 2,500 4,950 5,270 5,516								0° 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	precis valve n not 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	20° 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	measured with mender 30° 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	40° 3 0.3	45° 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37	must b g. Thro s are le 50° 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	60° 60° 0.58 0.5	lucted d f ball v. 45° op 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71	B0° B0° 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87	90° 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2,357 1,770 1,450 3,180 3,340 3,507	3,742 2,500 4,950 5,270 5,516								0° 0	precis valve n not 0.01	20° 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.	measui ed with mende 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	40° 3 0.3	45° 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37	must I g. Throo are le 0.45	Be condititing o 60° 0.58	International TO° 0.71	B0° 80° 0.87	90° 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2,357 1,770 1,450 3,180 3,340 3,507	3,742 2,500 4,950 5,270 5,516								0° 00 00 00 00 00 00 00 00 00 00 00 00 0	precis valve n not 0.01	20° 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.	measui ed with mende 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	40° 3 0.3	45° 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37	r must l g. Thro a are le 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	Deconduction 60° 0.58	lucted d f ball v. 45° op 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71	B0° 80° 0.87	90° 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2,357 1,770 1,450 3,180 3,340 3,507	3,742 2,500 4,950 5,270 5,516								00° 00 00 00 00 00 00 00 00 00 00 00 00	precis valve n not 0.01	e flow hention recom 0.05	measui ed with mende 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	40° 3 0.3	45° 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37	r must l g. Thro a are le 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	Deconduction 60° 0.58	lucted d f ball v. 45° op 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71	B0° B0° 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87	90° 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2,357 1,770 1,450 3,180 3,340 3,507	3,742 2,500 4,950 5,270 5,516								0° 0	precis valve n not 0.01	e flow hention recom 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	measui ed with mende 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	40° 0.3	45° 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37	r must l g. Thro c are le 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	60° condition of the second se	lucted d f ball v. 45° op 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71	B0° B0° alves is sen. 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87	90° 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2,357 1,770 1,450 3,180 3,340 3,507	3,742 2,500 4,950 5,270 5,516								00° 00 00 00 00 00 00 00 00 00 00 00 00	precis valve n not 0.01	e flow hention recom 0.05	measui ed with mende 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	40° 3 0.3	45° 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37	r must l g. Thro a are le 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	60° condition of the second se	lucted d f ball v. 45° op 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71	B0° B0° 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87	90° 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2,357 1,770 1,450 3,180 3,340 3,507 14,400	3,742 2,500 4,950 5,270 5,516 25,300	5,700	7,200	9,400		18,500	33,000	50,000	0° 0	precis valve n not 0.01	e flow hention recom 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	measui ed with mende 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	40° 0.3	45° 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37	r must l g. Thro c are le 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	60° conditional of the condition	lucted d f ball v. 45° op 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71	B0° alves is ben. 80° 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87	90° 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2,357 1,770 1,450 3,180 3,340 3,507	3,742 2,500 4,950 5,270 5,516								0° 0	precis valve n not 0.01	e flow nention recom 0.05 000 0.05 000 0.05 0000000000	measui ed with mende 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	40° 0.3	45° 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37	r must l g. Thro c are le 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	60° condition of the second se	lucted d f ball v. 45° op 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71	B0° B0° alves is sen. 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87	90° 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Properties of Valve Materials

				NC	JMINAL OR N	AXIMUM CHEN	MICAL C	OMPO	SITION		
ALLOY	ASTM NO.	OTHER ALLOY DESIGNATION	AL		CHROME CO)BALT COPPER Co Cu			MANGA-	- MOLYB- DENUM Mo	
Commercial Aluminum 380	SC 84 A (modified)	UNS A38000	87.0			1.0	1.3		.35		
Free Cutting Brass	B 16	UNS C36000				61.5		3.0			
Navy "M" (Steam Bronze)	B 61	UNS C92200	.005			88.0	.25	1.5			_
Composition Bronze (Ounce Metal)	B 62	UNS C83600	.005			85.0	.30	5.0			
Copper-Silicon Alloy B	B 98/B 99	UNS C65100				96.0	.8	.05	.7		
Forging Brass	B 124	UNS C37700				60.0	.3	2.0			
	B 283	UNS C37700				58.0	.3	2.5			
Brass Wire (Red Brass)	B 134	UNS C23000				85.0	.05	.05			
Brass Wire (Red Brass)	B 140	UNS C31400				89.0	.10	1.9			
Aluminum Bronze (Cast)	B 148	UNS C95400	11.0			85.0	4.0				
Aluminum Bronze (Rod)	B 150	UNS C64200	7.0			91.0	.30	.05	.10		
Silicon Red Brass	B 371	UNS C69400			-	81.5	.20	.30			
Leaded Semi-Red Brass	B 584	UNS C84400	.005			81.0	.40	7.0			
Leaded Red Brass		UNS C84500	.005			78.0	.40	7.0			
Leaded Nickel Bronze	B 584	UNS C97600				64.0		4.0			_
Leaded Nickel Bronze Copper (Wrot)	B 75	UNS C12200				99.9					-
Gray Iron	A 126	Class B									
3% Ni Gray Iron	A 126 (modified)	Class B									
Austenitic Gray Iron (Ni-Resist)	A 436	Туре 2		3.00	2.0	.5			1.0		
Ductile Iron (Ferritic)	A 395			3.20							
Austenitic Ductile Iron (Ductile) (Ductile)	A 536 65-45-12 A 536 80-55-06										
(Ni-Resist)	A 439 D2C			2.9	.5				2.4	1.0	

	NC	MINAL OR	MAXIMUM	CHEM	ICAL COM		NOMINAL PHYSICAL PROPERTIES					
NICKE Ni	L PHOS P	SILICON Si	SULFUR S	TIN Sn	titan- Ium Ti	TUNG- STEN W	ZINC Zn	TENSILE STRENGTH Psi	YIELD STRENGTH Psi	% ELONGATION	HARDNESS	
.50		12.0		.15			.50	42,000	19,000	3.5		
							35.5	50,000	20,000	15	75 HRB	
1.0	.05	.005	.05	6.0			4.5	34,000	16,000	22	65 HB *500 kg	
1.0	.05	.005	.08	5.0			5.0	30,000	14,000	20	60 HB 500 kg	
		1.6					1.5	86,000**	20,000	11	65 HRB	
							38.0	52,000	20,000	45	80 HRB	
							38.0	52,000	20,000	45	78 HRB	
							15.0	56,000			60 HRB	
.7							9.1	50,000	30,000	7	60 HRB	
								75,000	30,000	12	170 HB *3000 kg	
.25		2.0		.20			.50	90,000	45,000	9	80 HRB	
		4.0					14.5	80,000	40,000	15	85 HRB	
	.02	.005	.08	3.0			9.0	29,000	13,000	18	55 HB *500 kg	
1.0	.02	.005	.08	3.0			12.0	29,000	13,000	16	55 HB *500 kg	
20.0				4.0			8.0	40,000	17,000	10	80 HB	
	.02							36,000	30,000	25	45 T	
	.75		.15					31,000			195 HB	
3.00	.75		.15					31,000			195 HB	
20.0		2.0	.12					25,000			118 HB	
	.08	2.50						60,000	40,000	18	167 HB	
24.0	.08 .08 .08	2.50 2.50 3.0						65,000 80,000 58,000	45,000 55,000 28,000	12 6 20	160 HB 160 HB 146 HB	

*Load Applied During Testing **Allowable Range is 75,000 to 95,000

Properties of Valve Materials

				NOMINAL OR MAXIMUM CHEMICAL COMPOSITION									
					N	OMINAL O	R MAXIN	IUM CHEN	IICAL C	OMPOS			
	ALLOY	ASTM NO.	OTHER ALLOY DESIGNATION	C/ Al	ARBON C	CHROME Cr	COBALT Co	COPPER Cu	IRON Fe	LEAD Pb	MANGA- NESE Mn	MOLYB- DENUM Mo	
	Wrot 304 Cast 316	A 167 304 A 351 CF8M	UNS S30400 UNS S31600		.08 .08	19 20					2 1.5	2.5	
	Cast 316 Cast 316	A 743 CF16F A 743 CF8M			.16 .08	20 20					1.5 1.5	1.5 2.5	
Steel	Wrot 316 Cast 410	A 276 316 A 217 CA 15	UNS S31600		.08 .15	17 13					2 1	2.5	
nless (Forged 410 Wrot 410 Wrot 416	A 182 F6A2 A 276 410	UNS S41000		.15	13 13					1		
Stai	Wrot 416 Wrot 420	A 582 A 276 420	UNS S41600 UNS S42000		.15 .15	13 13					1.25 1		
	Cast Alloy 20 Wrot Alloy 20	A 743 CN7M B 473 20C63	UNS N08020		.07 .07	20 20		3.5 3.5			1.5 2	2.5 2.5	
	Wrot 17-4PH	A 564 630	UNS S17400		.07	16		3.5			1		
els	Forged Carbon Steel Cast Carbon Steel Cast Carbon Steel	A 105 A 216 WCB A 216 WCC			.35 .3 .25						1 1.1 1.2		
Steels	1¼ Cast Cr. Moly Steel Cast Cr. Moly Steel	A 217 WC6 A 217 C5			.2 .2	1.2 5					.7 .55	.55 .55	
	Cast Low Carbon Steel Nickel-Low Carbon Steel	A 352 LCB A 352 LC2			.3 .25						1.0 .65		
	B-7 Alloy Steel Studs 304 SS Nuts	A 193 B7 A 194 GR8			.4 .08	1 19					.85 2	.2	
<u>s</u>	2-H Alloy Steel Nuts Reg. Steel Bolting	A 194 2H A 307 Gr. B			.4 .2					_	.45		
n Steels	Steel Bolting 304SS Bolting	A 449 A 493 304	UNS S30400		.4 .08	19					.6 2		
Trim	Eyebolts Gland Nuts	A 489 A 563 Gr. A			.48 .37	.55		.35			1.0 1.0		
	H/W Nuts Swing Bolt Pin	A 108 1020 A 108 1212	UNS G10200 UNS G12120		.20 .13						.45 .85		
	Yoke Bushing Caps Seat Ring Base	A108 12L14 A 519 1026			.15 .25					.25	1.0 .75		
Monel H.F.	(Trademark Materials like, Stellite 6*, Stoody 6, and Wallex 6)		AWS 5.13		1.25	29	55		2.5				
Mc	Cast Monel Wrought Monel (K-500)		QQ-N-288-E QQ-N-286-C1B	.5 3.0	.3 .1			30 24	3.5 2.0		1.5 1.5		
	*Trademark by Cabot Corp.												

*Trademark by Cabot Corp.

BCO	*		
AHEAD	O F	ΤΗΕ	FLO W®

	NO	MINAL OR	махімим	CHEMI	CAL COM	NOMINAL PHYSICAL PROPERTIES					
NICKEL Ni	PHOS P	SILICON Si	SULFUR S	TIN Sn	titan- Ium Ti	TUNG- STEN W	ZINC Zn	TENSILE STRENGTH Psi	YIELD STRENGTH Psi	% ELONGATION	HARDNESS
9 11	.045 .04	1.0 2.0	.03 .04					75,000 70,000	30,000 30,000	40 25	202 HB
11 12	.04 .045	2.0 1.0	.04 .03					70,000 75,000	30,000 30,000	30 30	
12 1	.045 .04	1.0 1.5	.03 .04					75,000 90,000	30,000 65,000	30 18	
.5	.04 .04	1.0 1.0	.03 .03					85,000 100,000	55,000 80,000	18 15	200/225 HB
	.06 .04	1.0 1.0	.15 .03					114,000	95,000	17	235 HB 250/450 HB
28 35	.04 .045	1.5 1.0	.04 .035					62,000 85,000	25,000 35,000	35 30	
4	.04	1.0	.03					115,000	75,000	18	255 HB
	.04 .04 .04	.035 .6 .6	.05 .045 .04					70,000 70,000 70,000	36,000 36,000 40,000	22 22 22	187 HB
	.04 .04	.06 .75	.045 .045								
2.5	.04 .04	.6 .6	.045 .045					65,000 70,000	35,000 40,000	24 24	
9	.035 .045	.25 1.0	.04 .03					125,000	105,000	16	126/300 HB
	.04 .04		.05 .05					100,000		18	250/300 HB 121/212 HB
9	.04 .045	1.0	.05 .03					120,000 90,000	92,000	14	
.35	.04 .04	.25 .2	.05 .05					75,000	30,000	30	
	.04 .10		.05 .20								120/300 HB
	.07 .04		.3 .05					55,000	35,000	25	
3						5		105,000		10	350 HB
60 67		1.5 .5	.01		.5			65,000 135,000	32,500 95,000	25 20	125/150 HB 255 HB

DIMENSIONAL REQUIREMENTS OF FLANGE/ PIPE CONNECTIONS FOR NIBCO® RUBBER SEATED LUG & WAFER STYLE BUTTERFLY VALVES

NIBCO butterfly valves, depending on size and pressure rating, are designed to mate with ASME B16.1, ASME B16.5, ASME B16.42 & ASME B16.47 series A flanges. Cast iron and steel flat-face flanges can be used with all NIBCO butterfly valves however steel raised-face flanges should not be used with cast grey iron lug style butterfly valves (NIBCO LC2000 and N200 series). While flange standards specify flange OD, thickness, bolt size, bolt circle diameter, and number of bolts, they may not specify flange opening ID. Care must be used when selecting mating components for use with NIBCO lug and wafer style butterfly valves. **The internal diameter of flanges, fittings, and pipe must be compatible with the butterfly valve for proper seal and operation.** When in the open position, the disc extends outward from the valve body. The internal diameter of connecting components must be large enough allowing clearance for the disc to fully open. The below disc clearances are in accordance with Butterfly Valve Standard MSS SP-67, Table A1.

NIBCO 2" thru 48" size butterfly valves have an integral rubber face that seals to the attaching flange, therefore a separate gasket is not necessary and should not be used. The flange inside diameter must not be too large or it will not mate properly with the seal. See below for minimum and maximum inside diameters of connecting piping/flanges to assure proper seal and operation of butterfly valves. Verify the inside diameter and clearance dimensions of all components connecting directly to a butterfly valve.

VALVE SIZE	MINIMUM PIPE/FLANGE ID FOR DISC CLEARANCE	MAXIMUM Flange/Pipe ID For Proper Seal
2"	2.00"	2.49"
2 1/2"	2.37"	2.86"
3"	2.67"	3.43"
4"	3.69"	4.55"
5"	4.76"	5.62"
6"	5.84"	6.62"
8"	8.00"	8.62"
10"	10.00"	10.80"
12"	11.99"	13.12"
14"	13.02"	14.01"
16"	15.20"	16.30"
18"	17.09"	18.31"
20"	18.90"	20.08"
24"	23.05"	27.71"
30"	29.06"	30.29"
36"	33.59"	36.04"
42"	39.83"	42.77"
48"	44.85"	48.27"

LD/WD/LC/WC1000/2000/3000/5000 SERIES

These charts show the minimum and maximum inside diameters of connecting piping.flanges that will assure proper seal and operation with NIBCO butterfly valves. Verify the inside diameter and clearnace dimensions of all components connecting directly to the butterfly valve.

N200 SERIES

VALVE SIZE	MINIMUM Pipe/flange id For disc clearance	MAXIMUM Flange/Pipe ID For proper seal
2"	1.38"	2.24"
2 1/2"	1.95"	2.74"
3"	2.66"	3.33"
4"	3.67"	4.55"
5"	4.48"	5.50"
6"	5.96"	6.66"
8"	7.85"	8.61"
10"	9.76"	10.75"
12"	11.72"	12.79"

AHEAD OF THE FLOW®

Butterfly Valve Technical Information

Valve Installation Procedure - For Lug & Wafer Style Valves

Always position the connecting pipe flanges accurately in the line, allowing sufficient space between the flanges for the valve. Make sure the pipe flange faces are clean of any foreign material such as scale, metal shavings or welding slag. Valves should be installed with the disc in the closed position to prevent damage to sealing surfaces.

- 1. Carefully insert the valves between the pipe flanges. Do not apply any lubricants to the seat faces as this may damage them.
- Line up, center and secure the valve between flanges using desired bolts or studs as listed in Table 4. Do not tighten bolts at this time.
- Carefully open the valve to assure free unobstructed disc movement. Disc interference may result when valves are installed in pipelines having smaller than normal inside diameters, such as heavy wall pipe, plastic-lined pipe, as-cast flanges or reducing flanges. Interference can also occur when connecting directly to a swing check or silent check. Suitable corrective measures must be taken to remove these obstructions, such as taper boring the pipe or installing a spacer or spool piece.
- 4. After proper operation is verified, tighten the bolts to the minimum recommended
- bolt torques listed in Table 3 below using a cross-over pattern, also shown below in Figure 3.
 5. Pressurize piping to valve and inspect for leakage. If leakage is observed, tighten bolts using cross-over pattern, increasing torque until leak stops.
- cross-over pattern, increasing torque until leak stops.
 D0 NOT EXCEED MAXIMUM TORQUES LISTED IN TABLE 3.
 6. Recommended torques are made without warranty. Installer must verify proper strength bolts for application. Bolts shall be clean and un-lubricated.

NOTE: LUG STYLE VALVES - Extra care should be used when installing with raised face flanges. Over-tightening can result in broken lugs.

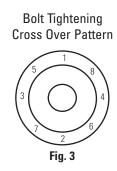

- Caution
- 1. Class 250 cast iron and Class 300 steel flanges can not be used on these valves.
- 2. Rubber faced or mechanical flanges are **not** recommended.
- 3. This valve is not recommended for steam service.
- 4. Valves should **not** be assembled to the flanges and then welded into the piping system.
- 5. Lever-lock handles are **not** recommended for use on 8" and larger valves due to torque loads.
- 6. Do not install EPDM liner in compressed air lines.

Table 4 Recommended Bolt Lengths

Annoise Annoise <t< th=""><th></th><th></th><th>labi</th><th>e 4 Kec</th><th>ommend</th><th>ea Bolt I</th><th>Lengths</th><th></th><th></th></t<>			labi	e 4 Kec	ommend	ea Bolt I	Lengths		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	VALVE SIZE 1000/2000/3000 SERIES ONLY	TOTAL VALVE BODY WIDTH	ANSI B16.1 CLASS 125 CAST IRON FLANGE THICKNESS	ANSI B16.5 CLASS 150 STEEL FLANGE THICKNESS	ANSI B16.47 (SERIES A) CLASS 150 STEEL MSS SP-44 FLANGE THICKNESS	RECOMMENDED CAP SCREW LENGTH (LUGGED VALVES) DIMENSION "Y"	RECOMMENDED BOLT LENGTH (WAFER VALVES) DIMENSION "X"	TOTAL QUANTITY CAP SCREWS/BOLTS (TO MOUNT 2 FLANGES)	CAP SCREW SIZE
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2"	1.69		0.75		1.50	4.00	8/4	5/8-11 UNC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 1/2"	1.81	—	0.88		1.75	5.00	8/4	5/8-11 UNC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3"	1.81	—			1.75	5.00	8/4 8/4	5/8-11 UNC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.06	0.94	0.94	—	1.75	5.00		5/8-11 UNC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5"	2.19	0.94	0.94	—	1.75	5.00	16/8	3/4-10 UNC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6"	2.19	1.00	1.00	—	2.00	6.00	16/8	3/4-10 UNC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8"	2.38	1.12	1.12		2.25		16/8	3/4-10 UNC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10"	2.69	1.19			2.25			7/8-9 UNC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1.25	1.25		2.50			7/8-9 UNC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1.38		2.50			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1.56	1.56	_		9.00		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5.14		1.69					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5.98							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2.12						,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						3.00	_		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30"	6.57							1 1/4-7 UNC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					2.94	4.25	_		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2.38		—	4.00	—	64	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.01				_	3.50	_	64	4.4/0.0100
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	36"	8.00		_	_	4.00	_	64	1 1/2-6 UNC
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					3.56	5.00	_	64	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2.62		—	4.50	—		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	401			_	_		_	72	4.4/0.0100
3.81 5.50 72 2.75 4.50 88 48" 10.87 4.50 88 5.00 88 1 1/2-6 UNC	42"	9.88				4.50	—		1 1/2-6 UNC
48" 10.87 2.75 4.50 88 4.50 88 5.00 88					3.81	5.50			
48 10.87 <u>— — 5.00</u> <u>— 88</u> 17/2-6 UNC			2.75	—	—	4.50	—	88	
48 10.87 <u>— — 5.00</u> <u>— 88</u> 17/2-6 UNC	40"	10.07			—		—	88	1.1/0.01000
	48"	10.87			—	5.00	—	88	1 1/2-6 UNC
			—	—	4.25		—		

Table 3 Recommended Bolt Tightening Torques

Flange Size	Bolt Size		Maximum Bolt Torque (ft.•lbs.)
2"- 4"	5/8"	20	70
5"- 8"	3/4"	30	120
10" & 12"	7/8"	50	200
14" & 16"	1"	70	240
18" & 20"	1-1/8"	100	380
24" & 30"	1-1/4"	140	520
36"- 48"	1-1/2"	200	800

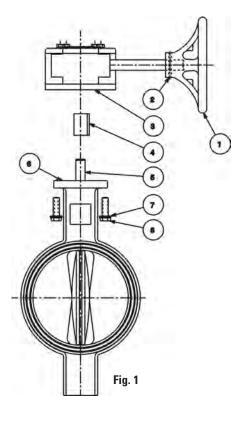
Suggested Bolting Methods

AHEAD OF THE FLOW®

Butterfly Valve Technical Information

Gear Operator Installation and Handwheel Positioning

Tools Required							
Fire Protection 2"—8" 9/16" hex wrench & 1/8" hex allen wrenc							
(UL/FM) 10" — 12" 3/4" hex wrench and 1/8" hex allen wrench							
	2" — 8"	9/16" hex wrench					
Commercial	<u>10" — 14"</u>	3/4" hex wrench					
	16" — 18"	1 1/8" hex wrench					

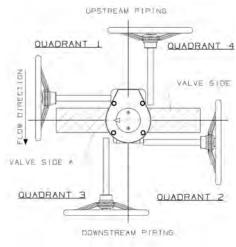
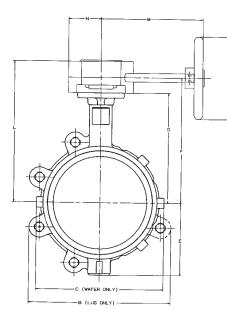

INSTALLATION

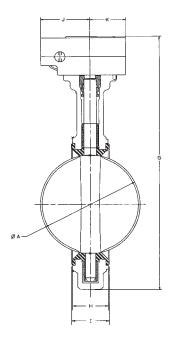
- Install handwheel (1) onto gear operator shaft and secure with pin (2). (If not already attached) See Fig. 1.
- 2. Turn the handwheel (1) clockwise until in full SHUT position.
- 3. Remove 2 screws holding pointer cover plate to center of gear operator to expose bore. Retain pointer cover plate and screws for reinstallation later.
- 4. Assure valve is in full SHUT position, turn valve stem (5) to close disc if necessary.
- 5. Assure both mounting base of gear operator (3) and valve top flange (6) are clean and dry.
- 6. Determined desired handwheel position in reference to the piping system and compare with Fig. 2. Basically there are 2 mounting positions for the gear operator onto the valve and the valve can be mounted in either direction into the piping system. This will allow handwheel to be positioned in any of the 4 Quadrants as shown in Fig. 2. Note that 10" and 12" size commercial valves only allow for handwheel positioning in Quadrants 1 and 2.
- 7a. Gear operators with adapter bushing
 - Insert adapter bushing (4) into gear operator (3) bore aligning bushing key with desired keyway. Keyway selection will determine handwheel orientation position.
 - Align adapter bushing (4) bore with valve stem (5) and slide gear operator assembly onto valve stem (5) until seated with valve top flange.
- 7b. Gear operators *without* adapter bushing
 - Align gear operator (3) bore with valve stem (5) and align with desired keyway. Keyway selection will determine handwheel orientation position.
 - Slide gear operator assembly onto valve stem (5) until seated with valve top flange.
- 8. Secure gear operator (3) to valve top flange (6) using supplied* fasteners (7 & 8).
- Reinstall pointer cover plate onto gear operator that you removed in step 3 above. Arrow should be aligned to indicate SHUT position.
- 10. Rotate handwheel from full SHUT to full OPEN positions several times to assure proper operation.
- 11. Proceed with valve installation into piping system.

*A minimum of two fasteners is required, installed in opposite diagonal corners. UL/FM valves require four fasteners.

Note - Connection of gear operator to valve stem varies depending on gear operator model, size and style. The adapter bushing and key may be different from illustration shown. UL/FM Valves require four fasteners.

Visit our website for the most current information.


Fig. 2

2000/3000 Series Technical Information

Valve with Gear Mounted

Typical LD/WD2000-5 and LD1000-5

	DIMENSIONS														
Valve Size	Α	B (Lug)	C (Wafer)	D	E	F	G	H (Metal)	l (Rubber)	J	К	L	м	N	Р
2″	2.5	4.6	4.9	5.4	2.9	6.9	11.1	1.69	1.81	2.9	2.13	8.2	7.64	2.12	5.91
21⁄2″	2.9	5.6	5.6	5.9	3.3	7.4	12.0	1.81	1.94	2.9	2.13	8.7	7.64	2.12	5.91
3″	3.1	6.1	6.1	6.1	3.4	7.6	12.3	1.81	1.94	2.9	2.13	8.9	7.64	2.12	5.91
4″	4.1	8.3	7.0	6.9	4.0	8.4	13.7	2.06	2.19	2.9	2.13	9.7	7.64	2.12	5.91
5″	5.1	9.4	8.3	7.4	4.8	8.9	15.0	2.19	2.31	2.9	2.13	10.2	7.64	2.12	5.91
6″	6.1	10.3	9.3	8.0	5.3	9.5	16.1	2.19	2.31	2.9	2.13	10.8	7.64	2.12	5.91
8″	8.1	13.4	11.6	9.3	6.5	10.8	18.5	2.38	2.5	2.9	2.13	12.0	9.53	2.12	9.84
10"	10.1	15.5	14.3	10.5	8.0	12.3	21.8	2.69	2.81	3.9	3.03	13.8	11.54	3.03	9.84
12"	12.1	18.3	16.8	12.0	9.3	13.8	24.6	3.00	3.13	3.9	3.03	15.3	11.54	3.03	9.84
14"	13.1	-	20.6	14.5	10.5	16.3	28.3	3.01	3.13	4.3	3.15	17.8	12.87	3.14	11.81
16"	15.3	-	22.3	15.7	11.7	17.9	31.7	3.38	3.54	6.3	3.94	20.0	13.58	4.92	11.81
18"	17.3	-	25.2	16.6	12.4	18.8	33.3	4.12	4.29	6.3	3.94	20.9	15.04	4.92	15.75
20"	19.4	-	27.4	18.9	13.7	21.3	37.8	5.14	5.31	6.5	4.92	24.1	18.11	4.92	11.81
24"	23.3	-	31.5	22.1	17.5	24.5	44.8	5.98	6.14	6.5	4.92	27.3	18.11	4.92	11.81

DIMENSIONS

Butterfly Valve Technical Information

Resilient Liner Materials

EPDM – EPDM is a terpolymer elastomer made from ethylene-propylene diene monomer. EPDM has good abrasion and tear resistance and offers excellent chemical resistance to a variety of acids and alkalines. It is susceptible to attack by oils and is not recommended for applications involving petroleum oils, strong acids, or strong alkalines. EPDM should not be used on compressed air lines. It has exceptionally good weather aging and ozone resistance. It is fairly good in ketones and alcohols.

BUNA-N (Nitrile) (NBR) – Buna-N is a general purpose oil resistant polymer known as nitrile rubber. Nitrile is a copolymer of butadiene and acrylonitrile. Buna-N has good solvent, oil, water and hydraulic fluid resistance. It displays good compression set, abrasion resistance and tensile strength. Buna-N should not be used in highly polar solvents such as acetone and methyl ethyl ketone, nor should it be used in chlorinated hydrocarbons, ozone or nitro hydrocarbons. Some aviation fuels may not be compatible.

Fluoroelastomer (FKM) – Fluoroelastomers are inherently compatible with a broad spectrum of chemicals. Because of this extensive chemical compatibility which spans considerable concentration and temperature ranges, fluoroelastomers have gained wide acceptance as a material of construction for butterfly valve O-rings and seats. Fluoroelastomer can be used in most applications involving mineral acids, salt solutions, chlorinated hydrocarbons and petroleum oils. It is particularly good in hydrocarbon service.

FKM is not recommended for use in high temperature water.

Liner Temperature Ratings

Liner Material	Temperature
EPDM**	-20°F to + 250°F
Nitrile (Buna-N)	-20°F to + 180°F
Fluoroelastomer	-20°F to + 300°F

**EPDM is rated at 250°F intermittent service and 225°F continuous service.

NOTE – the NIBCO Chem-Guide® should be referenced for liner material compatibility for each application.

Proprietary compound formulas are used for each of the elastomers to provide the right combination of seat compression, abrasion resistance, and chemical resistance to match your application. Elastomeric seat materials are not suitable for steam service.

AHEAD OF THE FLOW®

Butterfly Valve Technical Information

Metals Used in Valves & Fittings

Aluminum–A non-ferrous metal, very lightweight, approximately one-third as much as steel. Aluminum exhibits excellent atmospheric corrosion resistance, but can be very reactive with other metals. In valves, aluminum is mainly used as an exterior trim component such as a handwheel or identification tag.

Copper–Among the most important properties of wrot copper materials are their thermal and electrical conductivity, corrosion resistance, wear resistance, and ductility. Wrot copper performs well in high temperature applications and is easily joined by soldering or brazing. Wrot copper is exclusively used for fittings.

Bronze–One of the first alloys developed in the bronze age is generally accepted as the industry standard for pressure rated bronze valves and fittings. Bronze has a higher strength than pure copper, is easily cast, has improved machinability, and is very easily joined by soldering or brazing. Bronze is very resistant to pitting corrosion, with general resistance to most chemicals less than that of pure copper.

Silicon Bronze–Has the ductility of copper but much more strength. Silicon bronze has equal or greater corrosion resistance to that of copper. Commonly used as stem material in pressure-rated valves, silicon bronze has greater resistance to stress corrosion cracking than common brasses.

Aluminum Bronze–The most widely accepted disc material used in butterfly valves, aluminum bronze is heat treatable and has the strength of steel. Formation of an aluminum oxide layer on exposed surfaces makes this metal very corrosion resistant. Not recommended for high pH wet systems.

Brass-Generally good corrosion resistance. Susceptible to de-zincification in specific applications; excellent machinability. Primary uses for wrot brass are for ball valve stems and balls, and iron valve stems. A forging grade of brass is used in ball valve bodies and end pieces.

Gray Iron–An alloy of iron, carbon and silicon; easily cast; good pressure tightness in the as-cast condition. Gray iron has excellent dampening properties and is easily machined. It is standard material for bodies and bonnets of Class 125 and 250 iron body valves. Gray iron has corrosion resistance that is improved over steel in certain environments.

Ductile Iron-Has composition similar to gray iron. Special treatment modifies metallurgical structure which yields higher mechanical properties; some grades are heat treated to improve ductility. Ductile iron has the strength properties of steel using similar casting techniques to that of gray iron.

Carbon Steel– Very good mechanical properties; good resistance to stress corrosion and sulfides. Carbon steel has high and low temperature strength, is very tough and has excellent fatigue strength. Mainly used in gate, globe, and check valves for applications up to 850⁰F, and in one-, two-, and three-piece ball valves.

3% Nickel Iron–Improved corrosion resistance over gray and ductile iron. Higher temperature corrosion resistance and mechanical properties. Very resistant to oxidizing atmospheres.

Nickel-Plated Ductile Iron–Nickel coatings have received wide acceptance for use in chemical processing. These coatings have very high tensile strength, 50 to 225 ksi. To some extent, the hardness of a material is indicative of its resistance to abrasion and wear characteristics. Nickel plating is widely specified as a disc coating for butterfly valves.

400 Series Stainless Steel-An alloy of iron, carbon, and chromium. This stainless is normally magnetic due to its martensitic structure and iron-content. 400 series stainless steel is resistant to high temperature oxidation and has improved physical and mechanical properties over carbon steel. Most 400 series stainless steels are heat-treatable. The most common applications in valves are, for stem material in butterfly valves, and backseat bushings and wedges in cast steel valves.

316 Stainless Steel—An alloy of iron, carbon, nickel, and chromium. A non-magnetic stainless steel with more ductility than 400SS. Austinetic in structure, 316 stainless steel has very good corrosion resistance to a wide range of environments, is not susceptible to stress corrosion cracking and is not affected by heat treatment. Most common uses in valves are: stem, body and ball materials.

17-4 PH Stainless Steel*–Is a martensitic precipitation/age hardening stainless steel offering high strength and hardness. 17.4 PH withstands corrosive attack better than any of the 400 series stainless steels and in most conditions its corrosion resistance closely approaches that of 300 series stainless steel. 17.4 PH is primarily used as a stem material for butterfly and ball valves.

Alloy 20Cb-3*-This alloy has higher amounts of nickel and chromium than 300 series stainless steel and with the addition of columbium, this alloy retards stress corrosion cracking and has improved resistance to sulfuric acid. Alloy 20 finds wide use in all phases of chemical processing. Commonly used as interior trim on butterfly valves.

Monel*-Is a nickel-copper alloy used primarily as interior trim on butterfly and ball valves. One of the most specified materials for corrosion resistance to sea and salt water. Monel is also very resistant to strong caustic solutions.

Stellite*–Cobalt base alloy, one of the best all-purpose hard facing alloys. Very resistant to heat, abrasion, corrosion, impact, galling, oxidation, thermal shock and erosion. Stellite takes a high polish and is used in steel valve seat rings. Normally applied with transfer plasma-arc; Stellite hardness is not affected by heat treatment.

Hastelloy C*–A high nickel-chromium molybdenum alloy which has outstanding resistance to a wide variety of chemical process environments including strong oxidizers such as wet chlorine, chlorine gas, and ferric chloride. Hastelloy C is also resistant to nitric, hydrochloric, and sulfuric acids at moderate temperatures.

Note: See the NIBCO Chemical Resistance Guide for specific questions.

*Alloy 20Cb-3 is a registered trademark of Carpenter Technology

*Hastelloy C is a registered trademark of Cabot Corporation

*Stellite is a registered trademark of Cabot Corporation

* Monel is a registered trademark of International Nickel

*17-4 PH Stainless Steel is a registered trademark of Armco Steel Company

Butterfly Valve Technical Information Torque Data

LD/WD 2000/3000/5022 Series Torque Data (In. Lbs.)

Size	100 PSI	200 PSI	250 PSI
2″	140	180	195
2 1/2"	190	235	255
3"	250	300	325
4"	430	530	580
5″	590	790	845
6″	795	1,035	1,155
8"	1,850	2,350	2,600
10"	2,350	2,900	3,125
12″	3,875	5,390	6,145

LD/WD 1000/2000 Series Torque Data (In. Lbs.)

Size	50 PSI	75 PSI	100 PSI	150 PSI
14"	_	3,837	_	4,870
16″	—	5,003		6,685
18"	—	6,567	_	8,958
20"	—	8,540	_	11,950
24″	—	13,220	—	18,680
30"	28,320	29,782	30,864	33,336
36"	40,624	41,875	43,480	46,528
42"	69,744	72,076	74,632	79,864
48"	96,648	100,520	103,840	111,112

N200 Series Torque Data (In. Lbs.)

100 PSI	200 PSI	
120	220	
130	320	
180	480	
280	820	
360	1,162	
600	1,560	
1,100	2,890	
2,040	5,270	
4,500	8,050	
	120 130 180 280 360 600 1,100 2,040	120 220 130 320 180 480 280 820 360 1,162 600 1,560 1,100 2,890 2,040 5,270

Note: Torque Data shown is for general service (clean water, ambient temperatures). For non-lubricating, high temperatures or aggressive media, consult Nibco Technical Service.

Butterfly Valve Torque Data

Torque is the rotary effort required to operate a valve. This turning force in a butterfly valve is determined by three factors. (1) Friction of the disc to seat for sealing (2) Bearing friction (3) Dynamic torque.

Breakaway Torque is the total of the torques resulting from bearing friction and seat/disc interference friction at a given pressure differential. This value is normally the highest required torque to operate a valve, and is used in sizing actuators. The values listed at the left are based on performance tests and include a safety factor. The torques listed are valid for water and lubricating fluids at ambient temperature. For dry and non-lubricating fluids, contact your NIBCO customer service representative.

Butterfly valves, sizes 8" and larger, when used on liquids, show a marked increase in dynamic torque which tends to close the valve. For this reason, gear operated or actuated valves are recommended.

Torque listed for EPDM. When calculating torques for Buna-N, or Fluoroelastomer multiply listed torque by 1.25. Consult factory for dry service valves.

FC/FD27*5/57*5 GD4765/4775 Torque Data (In. Lbs.)

Size	100 PSI	200 PSI	300 PSI
2	48	67	83
2 1/2	48	67	83
3	100	134	168
4	185	251	317
5	294	410	499
6	520	705	890
8	1,070	1,495	1,798
10	1,550	2,214	2,654
12	2,150	3,024	3,662

Note: See Pages 41-42 for High Performance BFV Torque Data. Visit our website for the most current information.

Ball and/or Butterfly Valve Actuation Data Sheet

	es it is necessary to much data as possi	•	a to assure proper sizin	g and prev	vent damage to the system.
the field. Please i	•	s inquiry is for an as	embled and tested at th ssembled and tested pa		rather than assembled in field assembly:
I. Valve Inform		u uccombry			
	Butterfly 🗌 Ball 🗌	1			
			_ Qty		
			ressure:		Dry 🗌 Wet 🗌
<i></i>					
			Temperature:		
D. Service a			Throttled/Modulating		
II. Actuator Inf	ormation:				
A. Electric:	Voltage: 115VAC	☐ 220VAC □ 12V	/DC 🗌 24VDC 🗌		
	Time for 90° rotatio	n cycle time* (oper	n/close): 2 secs 🗌 🛛 4	secs 🗌	10 secs 🗌 12 secs 🗌
			13 secs 🗌 15	secs 🗌	30 secs 🗌
	*NIBCO recommends ut	ilizing the longest cycle	time available in order to re	duce the inci	dence of hydraulic shock
	Type Enclosure: N	EMA 4 🗌 🛛 NEM.	A 7 🗌		
	Special Requireme	nts: Brake 🗌	Thermo	ostat 🗌	
		Heater and T	hermostat 🗌 🛛 Manua	l Override	
		Extended Du	ty Motor 🗌 🛛 Positio	n Transmi	tter 🗌
		Extra SPDT S	Switches 🗌		
B. Pneumat	ic: Air supply to ac	:tuator:	PSI (Min. 40 psi, N	lax. 120 ps	si)
	Actuator Type:	Air-to-Air 🗌			
		Air-to-Spring 🗌	Failsafe: Open 🗌 Clo	osed 🗌	
	Solenoid:	NEMA 4/4x 🗌	NEMA 7/9 🗌		
	Switch Box:	If so: NEMA 4/4x	NEMA 7/9		
		Type: SPDT 🗌	DPDT 🗌 (two each is	standard)	
		Pneumatic Position	oner: 3-15 🗌 4-20 MA		
III. Special Not	es:				
NEMA 4/4x NEMA 7 end as defir	closures are for use ned in NFPA 70.	ise in non-hazardou in hazardous (clas		as Class I	or outdoors. , Division I, Group C or D Division I, Groups E, F, or G.

Figure Number Comparisons* Butterfly Valves

DUCTILE IRON

NIBCO	WD2000	LD2000	WD2100	LD2100	WD3010	LD3010	WD3110	LD3110	WD3022	LD3022
Bray	30-11010-120	31-11010-120	30-11010-684	31-11010-684	30-11010-119	31-11010-119	30-11010-713	31-11010-713	30-11010-124	31-11010-124
Centerline	A2-061-05	B2-061-05	A2-061-01	B2-061-01	A2-021-05	B2-021-05	A2-021-01	B2-021-01	A2-044-05	B2-044-05
Demco	NEC1114351	NEC5114351	NEC1114311	NEC5114311	NEC1115351	NEC5115351	NEC1115311	NEC5115311	NEC1122351	NEC5122351
Grinnell	WD-8281-3	LD-8281-3	WD-8181-3	LD-8181-3	WD-8201-3	LD-8201-3	WD-8101-3	LD-8101-3	WD-8271-4	LD-8271-4
Keystone	HS-1	HS-2								
Milwaukee	MW-233-E	ML-233-E	MW-233-B	ML-233-B	MW-232-E	ML-232-E	MW-232-B	ML-232-B	MW-234-E	ML-234-E
Willwaukee	10100-233-L	IVIL-233-L	10100-233-0	IWIE-200-D	IVIVV-ZJZ-L	IVIL-232-L	10100-232-0	IVIL-232-D	1VIVV-234-L	IVIL-204-L
Mueller Steam	55-ANK6-1	56-ANK6-1	55-ANK3-1	56-ANK3-1	55-ANI6-1	56-ANI6-1	55-ANI3-1	56-ANI3-1	55-AHH6-1	56-AHH6-1
Watts	DBF-04-121-15	DBF-03-121-15	DBF-04-121-25	DBF-03-121-25	DBF-04-111-15	DBF-03-111-15	DBF-04-111-25	DBF-03-111-25	DBF-04-131-25	DBF-03-131-25

NOTE: NIBCO lug style butterfly valves are fully rated for dead end service without a downstream flange. All valves listed above as comparable may not have this rating.

CAST IRON

NIBCO	N200235	N200135	N200245	N200145	N200236	N200136	N200246	N200146
Grinnell	LC128*3	WC128*3	LC118*3	WC118-3	LC120*3	WC120*3	LC110*3	WC110*3
Centerline	B106135	A106145	B106161	A106131	B102135	A102135	B102131	A102131
Watts	BF03-121-1	BF04-121-1	BF03-121-2	BF04-121-2	BF03-111-1	BF04-111-1	BF03-111-2	BF04-111-2
Milwaukee	CL223E	CW223E	CL223B	CW223B	CL222E	CW222E	CL222B	CW222B

*To be used as a guide only. Some variation in detail is possible. Information subject to change.

Notes:

Notes:

Notes:

NIBCO INC. 125% LIMITED WARRANTY

Applicable to NIBCO INC. Pressure Rated Metal Valves

NIBCO INC. warrants each NIBCO pressure rated metal valve to be free from defects in materials and workmanship under normal use and service for a period of five (5) years from date put into service.

In the event any defect occurs which the owner believes is covered by this warranty, the owner should immediately contact NIBCO Technical Services, either in writing or by telephone at 1.888.446.4226 or 1.574.295.3000. The owner will be instructed to return said product, at the owner's expense, to NIBCO INC., or an authorized representative for inspection. In the event said inspection discloses to the satisfaction of NIBCO INC. that said valve is defective, it will be replaced at the expense of NIBCO INC.. Replacements shall be shipped free of charge to the owner. In the event of the replacement of any valve, NIBCO INC. shall further pay the owner the greater of twenty-five (25%) percent of the price of the valve according to the published suggested list price schedule of NIBCO INC. in effect at the time of purchase, or ten (\$10.00) dollars, to apply on the cost of the installation of said replacement valve.

TO THE EXTENT PERMITTED BY LAW, THIS WARRANTY SPECIFICALLY EXCLUDES INCIDENTAL AND CONSEQUENTIAL DAMAGES OF EVERY TYPE AND DESCRIPTION RESULTING FROM ANY CLAIMED DEFECT IN MATERIAL OR WORKMANSHIP, INCLUDING BUT NOT LIMITED TO, PERSONAL INJURIES AND PROPERTY DAMAGES.

Some states or countries do not allow the exclusion or limitation of incidental or consequential damages so these limitations may not apply to you.

TO THE EXTENT PERMITTED BY LAW, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE LIMITED IN DURATION.

This warranty gives you specific legal rights, and you may also have other rights which vary from state to state and country to country.

How to Order

State quantity, figure number and size for each valve you wish to order. See individual valve catalog pages for specific or special product designations.

HOW MANY TO ORDER

NIBCO[®] valves are decimal packed for your convenience in handling, shipping and stock-keeping. Number in master carton varies with item.

POLICY ON RETURNS TO FACTORY

NO NIBCO valves are to be returned without prior written agreement. Transportation must be prepaid. A 20% charge will be made to cover cost of rehandling and reinspection.

TECHNICAL ASSISTANCE

Engineers, contractors, wholesalers or manufacturers may obtain special or technical assistance from any factory representative of NIBCO. Write, fax or phone.

> NIBCO INC. World Headquarters 1516 Middlebury Street Elkhart, IN 46516-4740 USA

> > Phone: 1.574.295.3000 Fax: 1.574.295.3307 Technical Service Phone: 1.888.446.4226 Fax: 1.888.336.4226

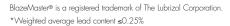
To the best of our knowledge the information contained in this publication is accurate. However, NIBCO does not assume any liability whatsoever for the accuracy or completeness of such information. Final determinations of the suitability of any information or product for the use to be contemplated is the sole responsibility of the user. The manner of that use, and whether there is any infringement of patents, is also the sole responsibility of the user.

Visit our website for the most current information.

NIBCO INC. WORLD HEADQUARTERS • 1516 MIDDLEBURY ST. • ELKHART, IN 46516-4740 • USA • PH: 1.800.234.0227 TECH SERVICES PH: 1.888.446.4226 • FAX: 1.888.336.4226 • INTERNATIONAL OFFICE PH: +1.574.295.3327 • FAX: +1.574.295.3455 www.nibco.com globally connecting you at all levels

It's a new age of business, and a new way at NIBCO. From Elkhart, Indiana to Lodz, Poland, and points beyond, our company has integrated manufacturing, distribution. and networked communications to provide a seamless source of information and service. 24 hours a day, 7 days a week. But this integration hasn't happened overnight. It's been part of a long-term strategic process that has pushed us to reconsider every aspect of our business. The result? We're a vertically integrated manufacturer with the products and systems in place to deliver low cost and high quality. NIBCO products are manufactured under a Quality Management System conforming to the current revision of ISO-9001 International Standards. We know the flow control industry is only going to get more demanding, and we are more than ready. We will continue to lead. That's what NIBCO is all about.

VALVES



Pressure-rated bronze, iron and alloy-iron gate, globe and check valves • Pressurerated bronze ball valves • Boiler specialty valves • Commercial and industrial butterfly valves • Lined butterfly valves • Circuit balancing valves • Carbon and stainless steel ball valves • ANSI flanged steel ball valves • Lined ball valves • Pneumatic and electric actuators and controls • Grooved ball and butterfly valves • High performance butterfly valves • UL/FM fire protection valves • MSS specification valves • Bronze specialty valves • Low pressure gate, globe, check and ball valves • Frostproof sillcocks • Quarter-turn supply stops • Quarter-turn low pressure valves • PVC and CPVC plumbing and industrial ball valves • Bronze & Iron Y-strainers • Sample valves • Sanitary valves • Lead-Free* valves • Coil-Connect® Kits

*Weighted average lead content ≤0.25%

FITTINGS -

Wrot and cast copper pressure and drainage fittings • Cast copper alloy flanges • Wrot and cast press fittings • ABS and PVC DVW fittings • Schedule 40 PVC pressure fittings • CPVC CTS fittings • CPVC CTS-to-metal transition fittings • Schedule 80 PVC and CPVC systems • CPVC BlazeMaster® fire protection fittings • Lead-Free* fittings

FLEXIBLE PIPING SYSTEMS

PE-RT and PEX tubing for potable and radiant applications • Insulated tubing • Risers • Ice maker tubing • Silicon Performance Bronze® fittings • Poly alloy fittings • Home Run Manifold® • Radiant heat manifolds • Ball valves and supply stops • Connections, tools and accessories • Radiant heat controls and panels

INDUSTRIAL PLASTICS

Thermoplastic pipe, valves, and fittings in PVC, Corzan® CPVC, polypropylene and PVDF Kynar[®] • Pneumatic and electric actuation systems • BlazeMaster[®] CPVC fire protection fittings

BlazeMaster® and Corzan® are registered trademarks of the Lubrizol Corporation • Kynar® is a registered trademark of Arkema Inc

EDI-Electronic Data Interchange • VMI-Vendor Managed Inventory • NIBCO.com • NIBCOpartner.com

eNIBCO

NIBCO INC. WORLD HEADQUARTERS WEB: www.nibco.com

1516 MIDDLEBURY STREET ELKHART, IN 46516-4740 USA

DOMESTIC CUSTOMER SERVICE PHONE: 800.234.0227 FAX: 800.234.0557

TECHNICAL SERVICE PHONE: 888.446.4226 FAX: 888.336.4226

INTERNATIONAL OFFICE PHONE: +1/574.295.3327 FAX: +1/574.295.3455

